Attention-Aware Polarity Sensitive Embedding for Affective Image Retrieval

Xingxu Yao, Dongyu She, Sicheng Zhao, Jie Liang, Yu-Kun Lai, Jufeng Yang
{"title":"Attention-Aware Polarity Sensitive Embedding for Affective Image Retrieval","authors":"Xingxu Yao, Dongyu She, Sicheng Zhao, Jie Liang, Yu-Kun Lai, Jufeng Yang","doi":"10.1109/ICCV.2019.00123","DOIUrl":null,"url":null,"abstract":"Images play a crucial role for people to express their opinions online due to the increasing popularity of social networks. While an affective image retrieval system is useful for obtaining visual contents with desired emotions from a massive repository, the abstract and subjective characteristics make the task challenging. To address the problem, this paper introduces an Attention-aware Polarity Sensitive Embedding (APSE) network to learn affective representations in an end-to-end manner. First, to automatically discover and model the informative regions of interest, we develop a hierarchical attention mechanism, in which both polarity- and emotion-specific attended representations are aggregated for discriminative feature embedding. Second, we present a weighted emotion-pair loss to take the inter- and intra-polarity relationships of the emotional labels into consideration. Guided by attention module, we weight the sample pairs adaptively which further improves the performance of feature embedding. Extensive experiments on four popular benchmark datasets show that the proposed method performs favorably against the state-of-the-art approaches.","PeriodicalId":6728,"journal":{"name":"2019 IEEE/CVF International Conference on Computer Vision (ICCV)","volume":"21 1","pages":"1140-1150"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE/CVF International Conference on Computer Vision (ICCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2019.00123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

Abstract

Images play a crucial role for people to express their opinions online due to the increasing popularity of social networks. While an affective image retrieval system is useful for obtaining visual contents with desired emotions from a massive repository, the abstract and subjective characteristics make the task challenging. To address the problem, this paper introduces an Attention-aware Polarity Sensitive Embedding (APSE) network to learn affective representations in an end-to-end manner. First, to automatically discover and model the informative regions of interest, we develop a hierarchical attention mechanism, in which both polarity- and emotion-specific attended representations are aggregated for discriminative feature embedding. Second, we present a weighted emotion-pair loss to take the inter- and intra-polarity relationships of the emotional labels into consideration. Guided by attention module, we weight the sample pairs adaptively which further improves the performance of feature embedding. Extensive experiments on four popular benchmark datasets show that the proposed method performs favorably against the state-of-the-art approaches.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
情感图像检索的注意感知极性敏感嵌入
由于社交网络的日益普及,图片对人们在网上表达自己的观点起着至关重要的作用。虽然情感图像检索系统对于从海量存储库中获取具有期望情感的视觉内容是有用的,但抽象和主观的特征使任务具有挑战性。为了解决这个问题,本文引入了一个注意感知极性敏感嵌入(APSE)网络,以端到端方式学习情感表征。首先,为了自动发现和建模感兴趣的信息区域,我们开发了一种分层注意机制,其中极性和情感特定的出席表示被聚合以进行判别特征嵌入。其次,我们提出了一个加权情感对损失,以考虑情感标签的极性间和极性内关系。在注意力模块的引导下,自适应地对样本对进行加权,进一步提高了特征嵌入的性能。在四个流行的基准数据集上进行的大量实验表明,所提出的方法优于最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Very Long Natural Scenery Image Prediction by Outpainting VTNFP: An Image-Based Virtual Try-On Network With Body and Clothing Feature Preservation Towards Latent Attribute Discovery From Triplet Similarities Gaze360: Physically Unconstrained Gaze Estimation in the Wild Attention Bridging Network for Knowledge Transfer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1