Two-Criteria Technique for the Resource-Saving Computing in the Fog and Edge Network Tiers

A. Klimenko
{"title":"Two-Criteria Technique for the Resource-Saving Computing in the Fog and Edge Network Tiers","authors":"A. Klimenko","doi":"10.23947/2687-1653-2023-23-1-85-94","DOIUrl":null,"url":null,"abstract":"Introduction. At present, the concepts of fog and edge computing are used in a wide range of applications of various kinds. One of the key problems in the organization of computing in groups of mobile devices that make up the edge/fog layer is the mission assurance based on battery power availability. In this context, a lot of developments aimed at energy saving of device systems have been presented to date. However, one important aspect remains beyond the consideration of the problem of resource saving, namely, the issue of saving the residual resource of a computing device. The aim of this research is to formalize the workload distribution problem as two-criteria optimization problem, and to develop the basic solution technique.Materials and Methods. Within the framework of this article, an approach to resource saving is proposed. It is based on the evaluation of two device criteria: battery life and residual resource of a computing device. The residual resource of a computing device can be estimated using the probability of failure-free operation of the device, or as the reciprocal of the failure rate, taking into account that the exponential law of failure distribution is used in the simulation. From this, a model of the problem of two-criteria optimization is formulated, taking into account the dynamics of the network topology in the process of performing a user mission. The topology dynamics is reflected in the model as a sequence of topologies, each of which corresponds to a certain period of time of the system operation.Results. Based on the proposed model of the two-criteria optimization problem, a method was proposed for resource saving in the edge and foggy layers of the network. It reflected the specifics of the dynamic layers of the network, and also took into account the importance of the criteria for estimating the consumption of device resources. An experiment was conducted to evaluate the impact of the method of distributing tasks over a network cluster on the probability of failure-free operation of devices and on the average residual resource.Discussion and Conclusions. The conducted experiment has demonstrated the feasibility of using the developed method, since the distribution of tasks among executing devices had a significant impact (up to 25 % according to the results of the experiment) on the average residual resource of a computing device.","PeriodicalId":13758,"journal":{"name":"International Journal of Advanced Engineering Research and Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Advanced Engineering Research and Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23947/2687-1653-2023-23-1-85-94","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction. At present, the concepts of fog and edge computing are used in a wide range of applications of various kinds. One of the key problems in the organization of computing in groups of mobile devices that make up the edge/fog layer is the mission assurance based on battery power availability. In this context, a lot of developments aimed at energy saving of device systems have been presented to date. However, one important aspect remains beyond the consideration of the problem of resource saving, namely, the issue of saving the residual resource of a computing device. The aim of this research is to formalize the workload distribution problem as two-criteria optimization problem, and to develop the basic solution technique.Materials and Methods. Within the framework of this article, an approach to resource saving is proposed. It is based on the evaluation of two device criteria: battery life and residual resource of a computing device. The residual resource of a computing device can be estimated using the probability of failure-free operation of the device, or as the reciprocal of the failure rate, taking into account that the exponential law of failure distribution is used in the simulation. From this, a model of the problem of two-criteria optimization is formulated, taking into account the dynamics of the network topology in the process of performing a user mission. The topology dynamics is reflected in the model as a sequence of topologies, each of which corresponds to a certain period of time of the system operation.Results. Based on the proposed model of the two-criteria optimization problem, a method was proposed for resource saving in the edge and foggy layers of the network. It reflected the specifics of the dynamic layers of the network, and also took into account the importance of the criteria for estimating the consumption of device resources. An experiment was conducted to evaluate the impact of the method of distributing tasks over a network cluster on the probability of failure-free operation of devices and on the average residual resource.Discussion and Conclusions. The conducted experiment has demonstrated the feasibility of using the developed method, since the distribution of tasks among executing devices had a significant impact (up to 25 % according to the results of the experiment) on the average residual resource of a computing device.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
雾层和边缘层资源节约计算的双准则技术
介绍。目前,雾和边缘计算的概念被广泛应用于各种各样的应用中。在组成边缘/雾层的移动设备组中组织计算的关键问题之一是基于电池可用性的任务保证。在此背景下,许多针对设备系统节能的发展已经被提出。然而,还有一个重要的方面没有考虑到资源节约的问题,即节省计算设备的剩余资源的问题。本研究的目的是形式化工作负载分配问题作为两个标准优化问题,和开发的基本解决方案技术。材料与方法。在本文的框架内,提出了一种节约资源的方法。它基于两个设备标准的评估:电池寿命和计算设备的剩余资源。计算设备的剩余资源可以使用设备无故障运行的概率来估计,或者作为故障率的倒数,考虑到在模拟中使用了故障分布的指数定律。在此基础上,建立了考虑用户任务执行过程中网络拓扑动态变化的双准则优化问题模型。拓扑动力学在模型中反映为拓扑序列,每个拓扑序列对应于系统运行的某个时间段的结果。基于所提出的双准则优化问题模型,提出了一种网络边缘层和雾层的资源节约方法。它反映了网络的动态层次细节,同时考虑的重要性的标准评估设备资源的消费。通过实验来评估在网络集群上分配任务的方法对设备无故障运行概率和平均剩余资源的影响。讨论和结论。所进行的实验证明了使用所开发方法的可行性,因为在执行设备之间分配任务对计算设备的平均剩余资源有显著影响(根据实验结果高达25%)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Investigation of Dynamic Characteristics of an Automated Position Long-Stroke Pneumatic Actuator of Fabrication System Optimization of Geometric Characteristics of Cycloidal Profiles of Gerotor Hydraulic Machines Sensitivity of Diffusion-Weighted Image Combined with T2 Turbo Inversion Recovery Magnitude Sequence and as an Alternative to Contrast-Enhanced MRI in the Detection of Perianal Fistula GATCGGenerator: New Software for Generation of Quasirandom Nucleotide Sequences 3D Human Motion Capture Method Based on Computer Vision
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1