A. Rosenwald, B. Murray, Theodore Toth, R. Madupu, A. Kyrillos, Gaurav S. Arora
{"title":"Evidence for horizontal gene transfer between Chlamydophila pneumoniae and Chlamydia phage","authors":"A. Rosenwald, B. Murray, Theodore Toth, R. Madupu, A. Kyrillos, Gaurav S. Arora","doi":"10.4161/21597073.2014.965076","DOIUrl":null,"url":null,"abstract":"Chlamydia-infecting bacteriophages, members of the Microviridae family, specifically the Gokushovirinae subfamily, are small (4.5–5 kb) single-stranded circles with 8–10 open-reading frames similar to E. coli phage φX174. Using sequence information found in GenBank, we examined related genes in Chlamydophila pneumoniae and Chlamydia-infecting bacteriophages. The 5 completely sequenced C. pneumoniae strains contain a gene orthologous to a phage gene annotated as the putative replication initiation protein (PRIP, also called VP4), which is not found in any other members of the Chlamydiaceae family sequenced to date. The C. pneumoniae strain infecting koalas, LPCoLN, in addition contains another region orthologous to phage sequences derived from the minor capsid protein gene, VP3. Phylogenetically, the phage PRIP sequences are more diverse than the bacterial PRIP sequences; nevertheless, the bacterial sequences and the phage sequences each cluster together in their own clade. Finally, we found evidence for another Microviridae phage-related gene, the major capsid protein gene, VP1 in a number of other bacterial species and 2 eukaryotes, the woodland strawberry and a nematode. Thus, we find considerable evidence for DNA sequences related to genes found in bacteriophages of the Microviridae family not only in a variety of prokaryotic but also eukaryotic species.","PeriodicalId":8686,"journal":{"name":"Bacteriophage","volume":"74 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2014-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bacteriophage","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4161/21597073.2014.965076","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14
Abstract
Chlamydia-infecting bacteriophages, members of the Microviridae family, specifically the Gokushovirinae subfamily, are small (4.5–5 kb) single-stranded circles with 8–10 open-reading frames similar to E. coli phage φX174. Using sequence information found in GenBank, we examined related genes in Chlamydophila pneumoniae and Chlamydia-infecting bacteriophages. The 5 completely sequenced C. pneumoniae strains contain a gene orthologous to a phage gene annotated as the putative replication initiation protein (PRIP, also called VP4), which is not found in any other members of the Chlamydiaceae family sequenced to date. The C. pneumoniae strain infecting koalas, LPCoLN, in addition contains another region orthologous to phage sequences derived from the minor capsid protein gene, VP3. Phylogenetically, the phage PRIP sequences are more diverse than the bacterial PRIP sequences; nevertheless, the bacterial sequences and the phage sequences each cluster together in their own clade. Finally, we found evidence for another Microviridae phage-related gene, the major capsid protein gene, VP1 in a number of other bacterial species and 2 eukaryotes, the woodland strawberry and a nematode. Thus, we find considerable evidence for DNA sequences related to genes found in bacteriophages of the Microviridae family not only in a variety of prokaryotic but also eukaryotic species.