Thermal performance and reliability characterization of bonded interface materials (BIMs)

D. DeVoto, P. Paret, M. Mihalic, S. Narumanchi, A. Bar-Cohen, K. Matin
{"title":"Thermal performance and reliability characterization of bonded interface materials (BIMs)","authors":"D. DeVoto, P. Paret, M. Mihalic, S. Narumanchi, A. Bar-Cohen, K. Matin","doi":"10.1109/ITHERM.2014.6892310","DOIUrl":null,"url":null,"abstract":"Thermal interface materials (TIMs) are an important enabler for low thermal resistance and reliable electronics packaging for a wide array of applications. There is a trend towards bonded interface materials (BIMs) because of their potential for low thermal resistance (<;1 mm2-K/W). However, due to coefficient of thermal expansion mismatches between various layers of a package, thermomechanical stresses are induced in BIMs and the package can be prone to failures and integrity risks. Deteriorated interfaces can result in high thermal resistance in the package and degradation and/or failure of the electronics. The Defense Advanced Research Projects Agency's (DARPA) Thermal Management Technologies (TMT) Program has addressed this challenge, supporting the development of mechanically compliant, low resistivity nano-thermal interface (NTI) materials. Prior development of these materials resulted in samples that met DARPA's initial thermal performance and synthesis metrics. In this present work, we describe the testing procedure and report the results of thermal performance and reliability characterization of an initial sample set of three different NTI-BIMs tested at the National Renewable Energy Laboratory.","PeriodicalId":12453,"journal":{"name":"Fourteenth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm)","volume":"75 1","pages":"409-417"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fourteenth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITHERM.2014.6892310","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

Thermal interface materials (TIMs) are an important enabler for low thermal resistance and reliable electronics packaging for a wide array of applications. There is a trend towards bonded interface materials (BIMs) because of their potential for low thermal resistance (<;1 mm2-K/W). However, due to coefficient of thermal expansion mismatches between various layers of a package, thermomechanical stresses are induced in BIMs and the package can be prone to failures and integrity risks. Deteriorated interfaces can result in high thermal resistance in the package and degradation and/or failure of the electronics. The Defense Advanced Research Projects Agency's (DARPA) Thermal Management Technologies (TMT) Program has addressed this challenge, supporting the development of mechanically compliant, low resistivity nano-thermal interface (NTI) materials. Prior development of these materials resulted in samples that met DARPA's initial thermal performance and synthesis metrics. In this present work, we describe the testing procedure and report the results of thermal performance and reliability characterization of an initial sample set of three different NTI-BIMs tested at the National Renewable Energy Laboratory.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
粘结界面材料(bim)的热性能及可靠性表征
热界面材料(TIMs)是低热阻和可靠的电子封装广泛应用的重要推动者。由于具有低热阻(< 1 mm2-K/W)的潜力,键合界面材料(BIMs)有发展的趋势。然而,由于封装各层之间的热膨胀系数不匹配,bim中会产生热机械应力,并且封装容易发生故障和完整性风险。恶化的接口会导致封装中的高热阻和电子设备的退化和/或故障。美国国防高级研究计划局(DARPA)热管理技术(TMT)计划已经解决了这一挑战,支持开发机械兼容、低电阻率纳米热界面(NTI)材料。这些材料的早期开发导致样品符合DARPA的初始热性能和合成指标。在目前的工作中,我们描述了测试过程,并报告了在国家可再生能源实验室测试的三种不同的nti - bim的初始样本集的热性能和可靠性表征的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Material behavior of SAC305 under high strain rate at high temperature Phase-separation of wetting fluids using nanoporous alumina membranes and micro-glass capillaries Nature-inspired enhanced microscale heat transfer in macro geometry Transient thermal imaging characterization of a die attached optoelectronic device on silicon A model for the free (top) surface deformation of through-silicon vias
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1