Kamran Baksh Soomro, S. Alaghmand, M. M. Shaikh, S. Andriyas, A. Talei
{"title":"Response of Salts in Saline Soil Using Different Irrigation Scheduling in Semi-Arid Zone of Pakistan","authors":"Kamran Baksh Soomro, S. Alaghmand, M. M. Shaikh, S. Andriyas, A. Talei","doi":"10.52763/PJSIR.PHYS.SCI.64.2.2021.110.118","DOIUrl":null,"url":null,"abstract":"The salinity of soil is a crucial challenge for growers irrigating in semi-arid zones. To accomplish salinity, growers require information about salt's basis and processes of the salt mobility through the root zone. Soil salinity can be managed by exceptional irrigating farming practices including irrigation scheduling to leach down salts through the root zone. This study aimed at examining the salts movement in saline soil in a semi-arid region in Sindh, Pakistan. This field experiment was conducted during the summer of 2017 on a salt-affected land by using three irrigation treatments of canal water including T1 (7 day irrigation interval), T2 (14 day irrigation interval) and T3 (21 days irrigation interval) under 10, 9 and 8 cm depths of irrigation water, respectively. The texture of soil was silty clay loam having an electrical conductivity (EC) ranging from 7.73 to 20.69 dS/m. However, the pH of the soil ranged from 7.89 to 8.04. The findings of a two-way analysis of variance were consistent with the statistical examination of EC and pH data day- wise (7, 14 and 21 days) and depths-wise (10, 9 and 8 cm). Average reductions in the EC and pH of the soil were observed at 7 days interval and 10cm depth at P<0.05. Overall, the findings exhibited that, compared to the 14 and 21 day intervals, a 7 day irrigation interval was more effective in terms of salt leaching from the soil profile. \n \n ","PeriodicalId":19924,"journal":{"name":"Pakistan Journal of Scientific & Industrial Research Series A: Physical Sciences","volume":"94 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pakistan Journal of Scientific & Industrial Research Series A: Physical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52763/PJSIR.PHYS.SCI.64.2.2021.110.118","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
The salinity of soil is a crucial challenge for growers irrigating in semi-arid zones. To accomplish salinity, growers require information about salt's basis and processes of the salt mobility through the root zone. Soil salinity can be managed by exceptional irrigating farming practices including irrigation scheduling to leach down salts through the root zone. This study aimed at examining the salts movement in saline soil in a semi-arid region in Sindh, Pakistan. This field experiment was conducted during the summer of 2017 on a salt-affected land by using three irrigation treatments of canal water including T1 (7 day irrigation interval), T2 (14 day irrigation interval) and T3 (21 days irrigation interval) under 10, 9 and 8 cm depths of irrigation water, respectively. The texture of soil was silty clay loam having an electrical conductivity (EC) ranging from 7.73 to 20.69 dS/m. However, the pH of the soil ranged from 7.89 to 8.04. The findings of a two-way analysis of variance were consistent with the statistical examination of EC and pH data day- wise (7, 14 and 21 days) and depths-wise (10, 9 and 8 cm). Average reductions in the EC and pH of the soil were observed at 7 days interval and 10cm depth at P<0.05. Overall, the findings exhibited that, compared to the 14 and 21 day intervals, a 7 day irrigation interval was more effective in terms of salt leaching from the soil profile.