{"title":"Molecular dynamic simulations of the desalination process through membrane technology: a review","authors":"Megha Mohan, S. K. Pramada","doi":"10.2166/ws.2023.155","DOIUrl":null,"url":null,"abstract":"\n \n Membrane technology is extensively used for water treatment including desalination to cope with the present water demands. The membrane performance can be analyzed and improved by various methods. A deep understanding of the molecular-level interaction occurring during membrane water treatment can be achieved by molecular dynamic simulations as it helps to develop a thorough knowledge of the systems and processes that occur in an experiment, which are not directly accessible. Through molecular dynamic simulation, a bridge between the experiment and theories can be formed. In this paper, a review of various molecular dynamic simulations that have been employed in the field of desalination using membrane technology is done. Molecular dynamic simulation of the desalination process has been grouped based on the effects of pressure, pore size, functional groups, salinity, electric field, and nanomaterials on the water flux and ion removal.","PeriodicalId":17553,"journal":{"name":"Journal of Water Supply Research and Technology-aqua","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Water Supply Research and Technology-aqua","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2166/ws.2023.155","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 1
Abstract
Membrane technology is extensively used for water treatment including desalination to cope with the present water demands. The membrane performance can be analyzed and improved by various methods. A deep understanding of the molecular-level interaction occurring during membrane water treatment can be achieved by molecular dynamic simulations as it helps to develop a thorough knowledge of the systems and processes that occur in an experiment, which are not directly accessible. Through molecular dynamic simulation, a bridge between the experiment and theories can be formed. In this paper, a review of various molecular dynamic simulations that have been employed in the field of desalination using membrane technology is done. Molecular dynamic simulation of the desalination process has been grouped based on the effects of pressure, pore size, functional groups, salinity, electric field, and nanomaterials on the water flux and ion removal.
期刊介绍:
Journal of Water Supply: Research and Technology - Aqua publishes peer-reviewed scientific & technical, review, and practical/ operational papers dealing with research and development in water supply technology and management, including economics, training and public relations on a national and international level.