Unbiased Deep Solvers for Linear Parametric PDEs

Marc Sabate Vidales, D. Šiška, L. Szpruch
{"title":"Unbiased Deep Solvers for Linear Parametric PDEs","authors":"Marc Sabate Vidales, D. Šiška, L. Szpruch","doi":"10.1080/1350486X.2022.2030773","DOIUrl":null,"url":null,"abstract":"We develop several deep learning algorithms for approximating families of parametric PDE solutions. The proposed algorithms approximate solutions together with their gradients, which in the context of mathematical finance means that the derivative prices and hedging strategies are computed simultaneously. Having approximated the gradient of the solution, one can combine it with a Monte Carlo simulation to remove the bias in the deep network approximation of the PDE solution (derivative price). This is achieved by leveraging the Martingale Representation Theorem and combining the Monte Carlo simulation with the neural network. The resulting algorithm is robust with respect to the quality of the neural network approximation and consequently can be used as a black box in case only limited a-priori information about the underlying problem is available. We believe this is important as neural network-based algorithms often require fair amount of tuning to produce satisfactory results. The methods are empirically shown to work for high-dimensional problems (e.g., 100 dimensions). We provide diagnostics that shed light on appropriate network architectures.","PeriodicalId":35818,"journal":{"name":"Applied Mathematical Finance","volume":"224 1","pages":"299 - 329"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematical Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/1350486X.2022.2030773","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 3

Abstract

We develop several deep learning algorithms for approximating families of parametric PDE solutions. The proposed algorithms approximate solutions together with their gradients, which in the context of mathematical finance means that the derivative prices and hedging strategies are computed simultaneously. Having approximated the gradient of the solution, one can combine it with a Monte Carlo simulation to remove the bias in the deep network approximation of the PDE solution (derivative price). This is achieved by leveraging the Martingale Representation Theorem and combining the Monte Carlo simulation with the neural network. The resulting algorithm is robust with respect to the quality of the neural network approximation and consequently can be used as a black box in case only limited a-priori information about the underlying problem is available. We believe this is important as neural network-based algorithms often require fair amount of tuning to produce satisfactory results. The methods are empirically shown to work for high-dimensional problems (e.g., 100 dimensions). We provide diagnostics that shed light on appropriate network architectures.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
线性参数偏微分方程的无偏深度解
我们开发了几种用于逼近参数PDE解族的深度学习算法。所提出的算法连同其梯度近似解,在数学金融的背景下,这意味着衍生品价格和对冲策略是同时计算的。在近似解的梯度之后,可以将其与蒙特卡罗模拟相结合,以消除PDE解(导数价格)的深度网络近似中的偏差。这是通过利用鞅表示定理并将蒙特卡罗模拟与神经网络相结合来实现的。所得到的算法在神经网络近似的质量方面是鲁棒的,因此在只有有限的先验信息可用的情况下,可以用作黑盒。我们认为这很重要,因为基于神经网络的算法通常需要相当数量的调优才能产生令人满意的结果。经验表明,这些方法适用于高维问题(例如,100维)。我们提供诊断,阐明适当的网络架构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Mathematical Finance
Applied Mathematical Finance Economics, Econometrics and Finance-Finance
CiteScore
2.30
自引率
0.00%
发文量
6
期刊介绍: The journal encourages the confident use of applied mathematics and mathematical modelling in finance. The journal publishes papers on the following: •modelling of financial and economic primitives (interest rates, asset prices etc); •modelling market behaviour; •modelling market imperfections; •pricing of financial derivative securities; •hedging strategies; •numerical methods; •financial engineering.
期刊最新文献
Price Impact Without Averaging On the Skew and Curvature of the Implied and Local Volatilities Arbitrage-Free Neural-SDE Market Models Policy Gradient Learning Methods for Stochastic Control with Exit Time and Applications to Share Repurchase Pricing Multi-Period Mean Expected-Shortfall Strategies: ‘Cut Your Losses and Ride Your Gains’
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1