Construction of a Smart City Network Information Security Evaluation Model Based on GRA-BPNN

Xiang Li
{"title":"Construction of a Smart City Network Information Security Evaluation Model Based on GRA-BPNN","authors":"Xiang Li","doi":"10.13052/jcsm2245-1439.1162","DOIUrl":null,"url":null,"abstract":"In this study, we propose an optimized network information security evaluation GRA-BPNN model based on gray correlation analysis method combined with BP neural network model, and make corresponding optimization for network information security evaluation index. Simulation experiments are conducted to analyze the experimental model, and the simulation results show that the test sample values reach the best training performance at the 7th iteration after 13 iterations, and the R-values in the regression of training results all reach above 0.99, and the data are well-fitted. When the number of training iterations reaches 13, the training gradient is 0.00067928, the value of Mu is 0.001, and the validity test value is 6. The GRA-BPNN model scores 0.028 higher than the GRA method, which is in line with the expected error, and the higher score also proves that the GRA-BPNN model is more comprehensive and specific in its scoring consideration.","PeriodicalId":37820,"journal":{"name":"Journal of Cyber Security and Mobility","volume":"83 1","pages":"755-776"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cyber Security and Mobility","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13052/jcsm2245-1439.1162","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 1

Abstract

In this study, we propose an optimized network information security evaluation GRA-BPNN model based on gray correlation analysis method combined with BP neural network model, and make corresponding optimization for network information security evaluation index. Simulation experiments are conducted to analyze the experimental model, and the simulation results show that the test sample values reach the best training performance at the 7th iteration after 13 iterations, and the R-values in the regression of training results all reach above 0.99, and the data are well-fitted. When the number of training iterations reaches 13, the training gradient is 0.00067928, the value of Mu is 0.001, and the validity test value is 6. The GRA-BPNN model scores 0.028 higher than the GRA method, which is in line with the expected error, and the higher score also proves that the GRA-BPNN model is more comprehensive and specific in its scoring consideration.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于GRA-BPNN的智慧城市网络信息安全评估模型构建
本研究提出了一种基于灰色关联分析方法与BP神经网络模型相结合的网络信息安全评价优化GRA-BPNN模型,并对网络信息安全评价指标进行了相应的优化。对实验模型进行仿真实验分析,仿真结果表明,经过13次迭代后,在第7次迭代时,测试样本值达到最佳训练性能,训练结果回归中的r值均达到0.99以上,数据拟合良好。当训练迭代次数达到13次时,训练梯度为0.00067928,Mu值为0.001,效度检验值为6。GRA- bpnn模型得分比GRA方法高0.028分,符合预期误差,较高的得分也证明了GRA- bpnn模型在评分考虑上更加全面和具体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Cyber Security and Mobility
Journal of Cyber Security and Mobility Computer Science-Computer Networks and Communications
CiteScore
2.30
自引率
0.00%
发文量
10
期刊介绍: Journal of Cyber Security and Mobility is an international, open-access, peer reviewed journal publishing original research, review/survey, and tutorial papers on all cyber security fields including information, computer & network security, cryptography, digital forensics etc. but also interdisciplinary articles that cover privacy, ethical, legal, economical aspects of cyber security or emerging solutions drawn from other branches of science, for example, nature-inspired. The journal aims at becoming an international source of innovation and an essential reading for IT security professionals around the world by providing an in-depth and holistic view on all security spectrum and solutions ranging from practical to theoretical. Its goal is to bring together researchers and practitioners dealing with the diverse fields of cybersecurity and to cover topics that are equally valuable for professionals as well as for those new in the field from all sectors industry, commerce and academia. This journal covers diverse security issues in cyber space and solutions thereof. As cyber space has moved towards the wireless/mobile world, issues in wireless/mobile communications and those involving mobility aspects will also be published.
期刊最新文献
Network Malware Detection Using Deep Learning Network Analysis An Efficient Intrusion Detection and Prevention System for DDOS Attack in WSN Using SS-LSACNN and TCSLR Update Algorithm of Secure Computer Database Based on Deep Belief Network Malware Cyber Threat Intelligence System for Internet of Things (IoT) Using Machine Learning Deep Learning Based Hybrid Analysis of Malware Detection and Classification: A Recent Review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1