Y. J. Wang, Nan Wang, S. Cheng, X. C. Zhang, H. Y. Liu, J. L. Shi, Q. Y. Ma, M. J. Zhou
{"title":"Optimization of disassembly line balancing using an improved multi-objective Genetic Algorithm","authors":"Y. J. Wang, Nan Wang, S. Cheng, X. C. Zhang, H. Y. Liu, J. L. Shi, Q. Y. Ma, M. J. Zhou","doi":"10.14743/apem2021.2.397","DOIUrl":null,"url":null,"abstract":"Disassembly activities take place in various recovery operations including remanufacturing, recycling, and disposal. Product disassembly is an effective way to recycle waste products, and it is a necessary condition to make the product life cycle complete. According to the characteristics of the product disassembly line, based on minimizing the number of workstations and balancing the idle time in the station, the harmful index, the demand index, and the number of direction changes are proposed as new optimization objectives. So based on the analysis of the traditional genetic algorithm into the precocious phenomenon, this paper constructed the multi-objective relationship of the disassembly line balance problem. The disassembly line balance problem belongs to the NP-hard problem, and the intelligent optimization algorithm shows excellent performance in solving this problem. Considering the characteristics of the traditional method solving the multi-objective disassembly line balance problem that the solution result was single and could not meet many objectives of balance, a multi-objective improved genetic algorithm was proposed to solve the model. The algorithm speeds up the convergence speed of the algorithm. Based on the example of the basic disassembly task, by comparing with the existing single objective heuristic algorithm, the multi-objective improved genetic algorithm was verified to be effective and feasible, and it was applied to the actual disassembly example to obtain the balance optimization scheme. Two case studies are given: a disassembly process of the automobile engine and a disassembly of the computer components.","PeriodicalId":48763,"journal":{"name":"Advances in Production Engineering & Management","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2021-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Production Engineering & Management","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.14743/apem2021.2.397","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 9
Abstract
Disassembly activities take place in various recovery operations including remanufacturing, recycling, and disposal. Product disassembly is an effective way to recycle waste products, and it is a necessary condition to make the product life cycle complete. According to the characteristics of the product disassembly line, based on minimizing the number of workstations and balancing the idle time in the station, the harmful index, the demand index, and the number of direction changes are proposed as new optimization objectives. So based on the analysis of the traditional genetic algorithm into the precocious phenomenon, this paper constructed the multi-objective relationship of the disassembly line balance problem. The disassembly line balance problem belongs to the NP-hard problem, and the intelligent optimization algorithm shows excellent performance in solving this problem. Considering the characteristics of the traditional method solving the multi-objective disassembly line balance problem that the solution result was single and could not meet many objectives of balance, a multi-objective improved genetic algorithm was proposed to solve the model. The algorithm speeds up the convergence speed of the algorithm. Based on the example of the basic disassembly task, by comparing with the existing single objective heuristic algorithm, the multi-objective improved genetic algorithm was verified to be effective and feasible, and it was applied to the actual disassembly example to obtain the balance optimization scheme. Two case studies are given: a disassembly process of the automobile engine and a disassembly of the computer components.
期刊介绍:
Advances in Production Engineering & Management (APEM journal) is an interdisciplinary international academic journal published quarterly. The main goal of the APEM journal is to present original, high quality, theoretical and application-oriented research developments in all areas of production engineering and production management to a broad audience of academics and practitioners. In order to bridge the gap between theory and practice, applications based on advanced theory and case studies are particularly welcome. For theoretical papers, their originality and research contributions are the main factors in the evaluation process. General approaches, formalisms, algorithms or techniques should be illustrated with significant applications that demonstrate their applicability to real-world problems. Please note the APEM journal is not intended especially for studying problems in the finance, economics, business, and bank sectors even though the methodology in the paper is quality/project management oriented. Therefore, the papers should include a substantial level of engineering issues in the field of manufacturing engineering.