Improving the Heat Transfer using Fe3O4 Nanoparticles Suspended in Water Flow through Circular Tube

Hamed J. Hussain
{"title":"Improving the Heat Transfer using Fe3O4 Nanoparticles Suspended in Water Flow through Circular Tube","authors":"Hamed J. Hussain","doi":"10.52716/jprs.v12i3.539","DOIUrl":null,"url":null,"abstract":"The new class of pressure drop and heat transfer enhancement through pipes and heat exchangers is defined a nano-fluid. The applications of this process are the cooling of oil inside heat exchanger and the flow of oil into the pipe line. In this work, the prediction of heat transfers and friction factor in a heated tube is studied. ANSYS software of CFD simulation through the geometrical problem undertaken was utilized. The Fe3O4 nanoparticles suspended in pure water has been adopted to flow through the test rig under ranges of nanoparticles mass concentrations and Reynolds number 1% to 4% and 4000 to 10000 respectively. The numerical results show that the friction factor and heat transfer enhancement increase as increase of nanoparticles mass concentrations 23% and 4% respectively. Additionally, the heat transfer is increased and the friction factor is decreased as increase of Reynolds number. It was concluded that Nusselt number increases due to add the solid nanoparticles to the water but slightly increases of pumping power. This obtained results are validated with the available data in the literature.","PeriodicalId":16710,"journal":{"name":"Journal of Petroleum Research and Studies","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Petroleum Research and Studies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52716/jprs.v12i3.539","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The new class of pressure drop and heat transfer enhancement through pipes and heat exchangers is defined a nano-fluid. The applications of this process are the cooling of oil inside heat exchanger and the flow of oil into the pipe line. In this work, the prediction of heat transfers and friction factor in a heated tube is studied. ANSYS software of CFD simulation through the geometrical problem undertaken was utilized. The Fe3O4 nanoparticles suspended in pure water has been adopted to flow through the test rig under ranges of nanoparticles mass concentrations and Reynolds number 1% to 4% and 4000 to 10000 respectively. The numerical results show that the friction factor and heat transfer enhancement increase as increase of nanoparticles mass concentrations 23% and 4% respectively. Additionally, the heat transfer is increased and the friction factor is decreased as increase of Reynolds number. It was concluded that Nusselt number increases due to add the solid nanoparticles to the water but slightly increases of pumping power. This obtained results are validated with the available data in the literature.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
悬浮于圆形管内水流中的Fe3O4纳米颗粒改善传热性能
通过管道和热交换器的新型压降和传热增强被定义为纳米流体。该工艺应用于换热器内油的冷却和油进入管道的流动。本文研究了热管的传热和摩擦系数的预测问题。利用ANSYS软件对几何问题进行CFD仿真。采用悬浮在纯水中的Fe3O4纳米颗粒在1% ~ 4%的质量浓度和4000 ~ 10000的雷诺数范围内通过试验台。数值结果表明,随着纳米颗粒质量浓度的增加,摩擦系数和传热强化系数分别增加23%和4%。随着雷诺数的增加,传热增大,摩擦系数减小。结果表明,固体纳米颗粒的加入增加了Nusselt数,但泵送功率略有增加。得到的结果与文献中可用的数据进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Iraq Crude Oil Exports- July, August, September, October, November, December/ 2022 Biosynthesis of Fe/Pd Bimetallic Nanoparticles and Used for Removal of Synthetic Oily Wastewater A Regional Static Model of the Dammam Aquifer as a Source of Injection Water, Southern Iraq Effect of the Deep Marin Balambo Formation on the Qamchuqa Reservoirs in Jambur Field Converting of Waste Crude Oil of East Baghdad Oil Field into Light Hydrocarbons Using Thermal Cracking Technology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1