Simulation of Facial Palsy Using Cycle GAN with Skip-Layer Excitation Module and Self-Supervised Discriminator

Q3 Computer Science 中国图象图形学报 Pub Date : 2023-06-01 DOI:10.18178/joig.11.2.132-139
Takato Sakai, M. Seo, N. Matsushiro, Yen-Wei Chen
{"title":"Simulation of Facial Palsy Using Cycle GAN with Skip-Layer Excitation Module and Self-Supervised Discriminator","authors":"Takato Sakai, M. Seo, N. Matsushiro, Yen-Wei Chen","doi":"10.18178/joig.11.2.132-139","DOIUrl":null,"url":null,"abstract":"The Yanagihara method is used to evaluate facial nerve palsy based on visual examinations by physicians. Examples of scored images are important for educational purposes and as references, however, due to patient privacy concern, actual facial images of real patients cannot be used for educational purposes. In this paper, we propose a solution to this problem by generating facial images of a virtual patient with facial nerve palsy, that can be shared and utilized by physicians. To reproduce the patient facial expression in a public face image, we propose a method to generate a swapped face image using the improved Cycle Generative Adversarial Networks (Cycle GAN) with a skiplayer excitation module and a self-supervised discriminator. Experimental results demonstrate that the proposed model can generate more coherent swapped faces that are similar to the public face identity and patient facial expressions. The proposed method also improves the quality of generated swapped face images while keeping them identical to the source (genuine) face image.","PeriodicalId":36336,"journal":{"name":"中国图象图形学报","volume":"33 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"中国图象图形学报","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.18178/joig.11.2.132-139","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

Abstract

The Yanagihara method is used to evaluate facial nerve palsy based on visual examinations by physicians. Examples of scored images are important for educational purposes and as references, however, due to patient privacy concern, actual facial images of real patients cannot be used for educational purposes. In this paper, we propose a solution to this problem by generating facial images of a virtual patient with facial nerve palsy, that can be shared and utilized by physicians. To reproduce the patient facial expression in a public face image, we propose a method to generate a swapped face image using the improved Cycle Generative Adversarial Networks (Cycle GAN) with a skiplayer excitation module and a self-supervised discriminator. Experimental results demonstrate that the proposed model can generate more coherent swapped faces that are similar to the public face identity and patient facial expressions. The proposed method also improves the quality of generated swapped face images while keeping them identical to the source (genuine) face image.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于跳跃层激励模块和自监督鉴别器的循环GAN仿真面瘫
Yanagihara法是基于医生的视觉检查来评估面神经麻痹。评分图像的示例具有重要的教育意义和参考意义,但出于对患者隐私的考虑,真实患者的真实面部图像不能用于教育目的。在本文中,我们提出了一个解决这个问题的方法,通过生成一个虚拟的面部神经麻痹患者的面部图像,可以被医生共享和利用。为了在公共人脸图像中再现患者的面部表情,我们提出了一种使用改进的循环生成对抗网络(Cycle GAN)生成交换人脸图像的方法,该网络具有skiplayer激励模块和自监督鉴别器。实验结果表明,该模型可以生成与公众面部身份和患者面部表情相似的更连贯的交换脸。该方法还提高了生成的交换人脸图像的质量,同时保持它们与源(真实)人脸图像相同。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
中国图象图形学报
中国图象图形学报 Computer Science-Computer Graphics and Computer-Aided Design
CiteScore
1.20
自引率
0.00%
发文量
6776
期刊介绍: Journal of Image and Graphics (ISSN 1006-8961, CN 11-3758/TB, CODEN ZTTXFZ) is an authoritative academic journal supervised by the Chinese Academy of Sciences and co-sponsored by the Institute of Space and Astronautical Information Innovation of the Chinese Academy of Sciences (ISIAS), the Chinese Society of Image and Graphics (CSIG), and the Beijing Institute of Applied Physics and Computational Mathematics (BIAPM). The journal integrates high-tech theories, technical methods and industrialisation of applied research results in computer image graphics, and mainly publishes innovative and high-level scientific research papers on basic and applied research in image graphics science and its closely related fields. The form of papers includes reviews, technical reports, project progress, academic news, new technology reviews, new product introduction and industrialisation research. The content covers a wide range of fields such as image analysis and recognition, image understanding and computer vision, computer graphics, virtual reality and augmented reality, system simulation, animation, etc., and theme columns are opened according to the research hotspots and cutting-edge topics. Journal of Image and Graphics reaches a wide range of readers, including scientific and technical personnel, enterprise supervisors, and postgraduates and college students of colleges and universities engaged in the fields of national defence, military, aviation, aerospace, communications, electronics, automotive, agriculture, meteorology, environmental protection, remote sensing, mapping, oil field, construction, transportation, finance, telecommunications, education, medical care, film and television, and art. Journal of Image and Graphics is included in many important domestic and international scientific literature database systems, including EBSCO database in the United States, JST database in Japan, Scopus database in the Netherlands, China Science and Technology Thesis Statistics and Analysis (Annual Research Report), China Science Citation Database (CSCD), China Academic Journal Network Publishing Database (CAJD), and China Academic Journal Network Publishing Database (CAJD). China Science Citation Database (CSCD), China Academic Journals Network Publishing Database (CAJD), China Academic Journal Abstracts, Chinese Science Abstracts (Series A), China Electronic Science Abstracts, Chinese Core Journals Abstracts, Chinese Academic Journals on CD-ROM, and China Academic Journals Comprehensive Evaluation Database.
期刊最新文献
Roselle Pest Detection and Classification Using Threshold and Template Matching Human Action Recognition with Skeleton and Infrared Fusion Model Melanoma Detection Based on SVM Using MATLAB Evaluation of SSD Architecture for Small Size Object Detection: A Case Study on UAV Oil Pipeline MonitoringEvaluation of SSD Architecture for Small Size Object Detection: A Case Study on UAV Oil Pipeline Monitoring Improving Brain Tumor Classification Efficacy through the Application of Feature Selection and Ensemble Classifiers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1