{"title":"Influence of lithium amount on vitreous enamel properties","authors":"A. M. Erayvaz, E. Derun","doi":"10.1051/METAL/2021028","DOIUrl":null,"url":null,"abstract":"Lithium is the lightest of all metals and the third element in the periodic table. Recent years, lithium salts have become an important input for the energy industry. Lithium carbonate and hydroxides are the basic building blocks of Li-ion battery production. The usage areas of lithium compounds are not limited to only energy; they are also utilized in heavy-duty machines, in the aluminum industry, in nuclear power plants and for glass, ceramics, frit, and coatings in industrial sectors. Lithium has also been found to be very useful in the development of harder, smoother, and more resistant low-temperature glasses, glazes, and enamels. It is also used in very-low-melting-point vitreous compositions like aluminum enamels, colors, fluxes, and glass-seals. The use of lithium also helps in the development of low-expansion bodies, glazes, and glasses. In this study, it is intended to explore the adherence forces in the steel sheet application of different amounts of lithium in enamel frit composition and to examine surface characteristics such as ease of cleaning, gloss, and color. For chemical characterization, X-ray fluorescence (XRF) spectrometry and color measurements were done with a Minolta CM-700d spectrometer device. Bond adherence tests were performed in accordance with the TS EN 10209 standard.","PeriodicalId":18527,"journal":{"name":"Metallurgical Research & Technology","volume":"23 1","pages":"306"},"PeriodicalIF":0.9000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metallurgical Research & Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1051/METAL/2021028","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Lithium is the lightest of all metals and the third element in the periodic table. Recent years, lithium salts have become an important input for the energy industry. Lithium carbonate and hydroxides are the basic building blocks of Li-ion battery production. The usage areas of lithium compounds are not limited to only energy; they are also utilized in heavy-duty machines, in the aluminum industry, in nuclear power plants and for glass, ceramics, frit, and coatings in industrial sectors. Lithium has also been found to be very useful in the development of harder, smoother, and more resistant low-temperature glasses, glazes, and enamels. It is also used in very-low-melting-point vitreous compositions like aluminum enamels, colors, fluxes, and glass-seals. The use of lithium also helps in the development of low-expansion bodies, glazes, and glasses. In this study, it is intended to explore the adherence forces in the steel sheet application of different amounts of lithium in enamel frit composition and to examine surface characteristics such as ease of cleaning, gloss, and color. For chemical characterization, X-ray fluorescence (XRF) spectrometry and color measurements were done with a Minolta CM-700d spectrometer device. Bond adherence tests were performed in accordance with the TS EN 10209 standard.
锂是所有金属中最轻的,也是元素周期表中的第三个元素。近年来,锂盐已成为能源工业的重要投入品。碳酸锂和氢氧化物是锂离子电池生产的基本组成部分。锂化合物的使用领域不仅限于能源;它们还用于重型机械,铝工业,核电站以及工业部门的玻璃,陶瓷,水果和涂料。锂也被发现在开发更硬、更光滑、更耐低温的玻璃、釉料和搪瓷方面非常有用。它也用于非常低熔点的玻璃组合物,如铝搪瓷,颜色,助焊剂和玻璃密封件。锂的使用也有助于低膨胀体、釉料和玻璃的开发。在本研究中,旨在探讨不同数量的锂在搪瓷熔块成分中对钢板的粘附力的影响,并研究表面特性,如易于清洁,光泽度和颜色。为了进行化学表征,使用美能达CM-700d光谱仪进行x射线荧光(XRF)光谱和颜色测量。粘接测试按照TS EN 10209标准进行。
期刊介绍:
Metallurgical Research and Technology (MRT) is a peer-reviewed bi-monthly journal publishing original high-quality research papers in areas ranging from process metallurgy to metal product properties and applications of ferrous and non-ferrous metals and alloys, including light-metals. It covers also the materials involved in the metal processing as ores, refractories and slags.
The journal is listed in the citation index Web of Science and has an Impact Factor.
It is highly concerned by the technological innovation as a support of the metallurgical industry at a time when it has to tackle severe challenges like energy, raw materials, sustainability, environment... Strengthening and enhancing the dialogue between science and industry is at the heart of the scope of MRT. This is why it welcomes manuscripts focusing on industrial practice, as well as basic metallurgical knowledge or review articles.