An artificial intelligence approach to fault isolation based on sensor data in Tennessee Eastman process

M. G. Zarch, Mohsen N. Soltani
{"title":"An artificial intelligence approach to fault isolation based on sensor data in Tennessee Eastman process","authors":"M. G. Zarch, Mohsen N. Soltani","doi":"10.1109/IECON43393.2020.9255330","DOIUrl":null,"url":null,"abstract":"An effective fault diagnosis scheme can improve system’s safety and reliability. Artificial Intelligence (AI) provides a good framework to deal with this issue. Deep learning is a successful implementation of AI that its superior isolation performance find its way in fault diagnosis area. In this study, based on feature extraction abilities of Convolutional Neural Network (CNN), a deep network have been developed in order to isolate different kinds of faults in Tennessee Eastman process. This network has an end-to-end structure with 13 layers that takes raw sensor’s data and has isolation performance of more than 98 percent. A comparison between our proposed method and a linear classifier that uses Principal Component Analysis(PCA) for feature extraction and a Neural Network (NN) with 2 hidden layers as nonlinear classifier have been conducted to show the performance of the proposed fault isolation scheme.","PeriodicalId":13045,"journal":{"name":"IECON 2020 The 46th Annual Conference of the IEEE Industrial Electronics Society","volume":"16 1","pages":"417-422"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IECON 2020 The 46th Annual Conference of the IEEE Industrial Electronics Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IECON43393.2020.9255330","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

An effective fault diagnosis scheme can improve system’s safety and reliability. Artificial Intelligence (AI) provides a good framework to deal with this issue. Deep learning is a successful implementation of AI that its superior isolation performance find its way in fault diagnosis area. In this study, based on feature extraction abilities of Convolutional Neural Network (CNN), a deep network have been developed in order to isolate different kinds of faults in Tennessee Eastman process. This network has an end-to-end structure with 13 layers that takes raw sensor’s data and has isolation performance of more than 98 percent. A comparison between our proposed method and a linear classifier that uses Principal Component Analysis(PCA) for feature extraction and a Neural Network (NN) with 2 hidden layers as nonlinear classifier have been conducted to show the performance of the proposed fault isolation scheme.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于传感器数据的田纳西伊士曼过程故障隔离的人工智能方法
有效的故障诊断方案可以提高系统的安全性和可靠性。人工智能(AI)为解决这一问题提供了一个很好的框架。深度学习是人工智能的成功实现,其优越的隔离性能在故障诊断领域发挥了作用。本研究基于卷积神经网络(CNN)的特征提取能力,开发了一种深度网络来隔离田纳西伊士曼过程中不同类型的故障。该网络具有端到端结构,共13层,采用原始传感器数据,隔离性能超过98%。通过与使用主成分分析(PCA)进行特征提取的线性分类器和具有2个隐藏层的神经网络(NN)作为非线性分类器的比较,证明了所提出的故障隔离方案的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A DCT/PET Submodule with Symmetrical Bipolar DC Outputs High-precision Sensorless Control Based on Magnetic Flux/Current Method for SRM Starting/Generating System Implementation of a Wireless Sensor Network Designed to Be Embedded in Reinforced Concrete H∞ Consensus Control for Discrete-Time Stochastic Multi-agent Systems with Infinite Markov Jumps Attitude stabilization for aircraft under angular velocity constraint
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1