{"title":"An artificial intelligence approach to fault isolation based on sensor data in Tennessee Eastman process","authors":"M. G. Zarch, Mohsen N. Soltani","doi":"10.1109/IECON43393.2020.9255330","DOIUrl":null,"url":null,"abstract":"An effective fault diagnosis scheme can improve system’s safety and reliability. Artificial Intelligence (AI) provides a good framework to deal with this issue. Deep learning is a successful implementation of AI that its superior isolation performance find its way in fault diagnosis area. In this study, based on feature extraction abilities of Convolutional Neural Network (CNN), a deep network have been developed in order to isolate different kinds of faults in Tennessee Eastman process. This network has an end-to-end structure with 13 layers that takes raw sensor’s data and has isolation performance of more than 98 percent. A comparison between our proposed method and a linear classifier that uses Principal Component Analysis(PCA) for feature extraction and a Neural Network (NN) with 2 hidden layers as nonlinear classifier have been conducted to show the performance of the proposed fault isolation scheme.","PeriodicalId":13045,"journal":{"name":"IECON 2020 The 46th Annual Conference of the IEEE Industrial Electronics Society","volume":"16 1","pages":"417-422"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IECON 2020 The 46th Annual Conference of the IEEE Industrial Electronics Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IECON43393.2020.9255330","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
An effective fault diagnosis scheme can improve system’s safety and reliability. Artificial Intelligence (AI) provides a good framework to deal with this issue. Deep learning is a successful implementation of AI that its superior isolation performance find its way in fault diagnosis area. In this study, based on feature extraction abilities of Convolutional Neural Network (CNN), a deep network have been developed in order to isolate different kinds of faults in Tennessee Eastman process. This network has an end-to-end structure with 13 layers that takes raw sensor’s data and has isolation performance of more than 98 percent. A comparison between our proposed method and a linear classifier that uses Principal Component Analysis(PCA) for feature extraction and a Neural Network (NN) with 2 hidden layers as nonlinear classifier have been conducted to show the performance of the proposed fault isolation scheme.