W. Ahmad, W. Khan, M. Khan, Mohd Mujeeb, S. Arif Zaidi, Sayeed Ahmad
{"title":"Quality control analysis of Safoof-e-Pathar phori: Antiurolithiatic formulation","authors":"W. Ahmad, W. Khan, M. Khan, Mohd Mujeeb, S. Arif Zaidi, Sayeed Ahmad","doi":"10.4103/2394-6555.180163","DOIUrl":null,"url":null,"abstract":"Aim: Safoof-e-Pathar phori (SPP), a Unani polyherbomineral formulation used for antilithiatic activity. The present study involves standardization of SPP to assess the quality. SPP were subjected to pharmacognostic studies, physiochemical properties, phytochemical analysis, high-performance thin layer chromatography (HPTLC), high-performance liquid chromatography (HPLC), and gas chromatography-mass spectrometry (GC-MS) fingerprint profile to set the standards, which can be used as reference of quality by herbal industries for its preparation and human use. Materials and Methods: The quality control of SPP has been carried out as per the AYUSH and WHO guidelines. The HPTLC fingerprinting has been done using chloroform: ethyl acetate (9:2, v/v) for petroleum ether extract, chloroform: toluene: ethyl acetate (7:2:4, v/v/v) for chloroform extract and for methanol extract petroleum ether: ethyl acetate (9:2, v/v) was used as mobile phase. HPLC was carried out using mobile phase consisted of acetonitrile and water in the ratio of 50:50 (v/v) for the methanolic extract. GC-MS fingerprinting profile has been carried out using hexane extract. Result: SPP was subjected to qualitative estimation of phytochemicals using standard methods, which revealed the presence of various bioactive components such as anthraquinone glycosides, carbohydrates, resins, proteins, flavonoids, phenolics, tannins, and terpenoids. The quantitative estimation of total phenolics and flavonoid content showed 0.44 mg/g and 1.02 mg/g, respectively. The HPTLC fingerprint showed presence of number of compounds for extracts at different Rfvalues. However, HPLC fingerprinting showed presence of 23 well-separated compounds and GC-MS showed presence of 22 compounds. Conclusion: The quality control parameters in present study reveal complete standardization profile of SPP for the 1st time, which would be of immense value in checking quality of developed formulation for human use.","PeriodicalId":11347,"journal":{"name":"Drug Development and Therapeutics","volume":"123 1","pages":"20 - 25"},"PeriodicalIF":0.0000,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Development and Therapeutics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4103/2394-6555.180163","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
Aim: Safoof-e-Pathar phori (SPP), a Unani polyherbomineral formulation used for antilithiatic activity. The present study involves standardization of SPP to assess the quality. SPP were subjected to pharmacognostic studies, physiochemical properties, phytochemical analysis, high-performance thin layer chromatography (HPTLC), high-performance liquid chromatography (HPLC), and gas chromatography-mass spectrometry (GC-MS) fingerprint profile to set the standards, which can be used as reference of quality by herbal industries for its preparation and human use. Materials and Methods: The quality control of SPP has been carried out as per the AYUSH and WHO guidelines. The HPTLC fingerprinting has been done using chloroform: ethyl acetate (9:2, v/v) for petroleum ether extract, chloroform: toluene: ethyl acetate (7:2:4, v/v/v) for chloroform extract and for methanol extract petroleum ether: ethyl acetate (9:2, v/v) was used as mobile phase. HPLC was carried out using mobile phase consisted of acetonitrile and water in the ratio of 50:50 (v/v) for the methanolic extract. GC-MS fingerprinting profile has been carried out using hexane extract. Result: SPP was subjected to qualitative estimation of phytochemicals using standard methods, which revealed the presence of various bioactive components such as anthraquinone glycosides, carbohydrates, resins, proteins, flavonoids, phenolics, tannins, and terpenoids. The quantitative estimation of total phenolics and flavonoid content showed 0.44 mg/g and 1.02 mg/g, respectively. The HPTLC fingerprint showed presence of number of compounds for extracts at different Rfvalues. However, HPLC fingerprinting showed presence of 23 well-separated compounds and GC-MS showed presence of 22 compounds. Conclusion: The quality control parameters in present study reveal complete standardization profile of SPP for the 1st time, which would be of immense value in checking quality of developed formulation for human use.