Growing Self-Organized Design of Efficient and Robust Complex Networks

Y. Hayashi
{"title":"Growing Self-Organized Design of Efficient and Robust Complex Networks","authors":"Y. Hayashi","doi":"10.1109/SASO.2014.17","DOIUrl":null,"url":null,"abstract":"A self-organization of efficient and robust networks is important for a future design of communication or transportation systems, however both characteristics are incompatible in many real networks. Recently, it has been found that the robustness of onion-like structure with positive degree-degree correlations is optimal against intentional attacks. We show that, by biologically inspired copying, an onion-like network emerges in the incremental growth with functions of proxy access and reinforced connectivity on a space. The proposed network consists of the backbone of tree-like structure by copyings and the peripheral by adding shortcut links between low degree nodes to enhance the connectivity. It has the fine properties of the statistically self-averaging unlike the conventional duplication-divergence model, exponential-like degree distribution without overloaded hubs, strong robustness against both malicious attacks and random failures, and the efficiency with short paths counted by the number of hops as mediators and by the Euclidean distances. The adaptivity to heal over and to recover the performance of networking is also discussed for a change of environment in such disasters or battlefields on a geographical map. These properties will be useful for a resilient and scalable infrastructure of network systems even in emergent situations or poor environments.","PeriodicalId":6458,"journal":{"name":"2014 IEEE Eighth International Conference on Self-Adaptive and Self-Organizing Systems Workshops","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Eighth International Conference on Self-Adaptive and Self-Organizing Systems Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SASO.2014.17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

A self-organization of efficient and robust networks is important for a future design of communication or transportation systems, however both characteristics are incompatible in many real networks. Recently, it has been found that the robustness of onion-like structure with positive degree-degree correlations is optimal against intentional attacks. We show that, by biologically inspired copying, an onion-like network emerges in the incremental growth with functions of proxy access and reinforced connectivity on a space. The proposed network consists of the backbone of tree-like structure by copyings and the peripheral by adding shortcut links between low degree nodes to enhance the connectivity. It has the fine properties of the statistically self-averaging unlike the conventional duplication-divergence model, exponential-like degree distribution without overloaded hubs, strong robustness against both malicious attacks and random failures, and the efficiency with short paths counted by the number of hops as mediators and by the Euclidean distances. The adaptivity to heal over and to recover the performance of networking is also discussed for a change of environment in such disasters or battlefields on a geographical map. These properties will be useful for a resilient and scalable infrastructure of network systems even in emergent situations or poor environments.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高效鲁棒复杂网络的成长自组织设计
高效且健壮的网络自组织对于未来通信或运输系统的设计非常重要,然而在许多实际网络中,这两种特征是不相容的。最近,研究发现,具有正度相关的洋葱状结构对故意攻击的鲁棒性是最佳的。我们表明,通过生物学启发的复制,一个类似洋葱的网络在增量增长中出现,具有代理访问和增强空间连通性的功能。该网络由树状结构的主干网络和通过在低度节点之间添加快捷链路来增强连通性的外围网络组成。它与传统的重复发散模型不同,具有统计自平均的优良特性,无过载集线器的指数型度分布,对恶意攻击和随机故障的鲁棒性强,以及通过跳数作为中介和欧几里得距离计算短路径的效率。本文还讨论了在地理地图上这种灾难或战场环境变化时,网络自愈和恢复性能的适应性。即使在紧急情况或恶劣环境中,这些属性对于网络系统的弹性和可扩展基础设施也很有用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Prosumers as Aggregators in the DEZENT Context of Regenerative Power Production A Hybrid Cross-Entropy Cognitive-Based Algorithm for Resource Allocation in Cloud Environments Artificial Immune System Driven Evolution in Swarm Chemistry Towards an Agent-Based Simulation Model for Schema Matching A Graph Analysis Approach to Detect Attacks in Multi-agent Systems at Runtime
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1