Approximate Storage in Solid-State Memories

IF 2 4区 计算机科学 Q2 COMPUTER SCIENCE, THEORY & METHODS ACM Transactions on Computer Systems Pub Date : 2014-09-23 DOI:10.1145/2644808
Adrian Sampson, Jacob Nelson, K. Strauss, L. Ceze
{"title":"Approximate Storage in Solid-State Memories","authors":"Adrian Sampson, Jacob Nelson, K. Strauss, L. Ceze","doi":"10.1145/2644808","DOIUrl":null,"url":null,"abstract":"Memories today expose an all-or-nothing correctness model that incurs significant costs in performance, energy, area, and design complexity. But not all applications need high-precision storage for all of their data structures all of the time. This article proposes mechanisms that enable applications to store data approximately and shows that doing so can improve the performance, lifetime, or density of solid-state memories. We propose two mechanisms. The first allows errors in multilevel cells by reducing the number of programming pulses used to write them. The second mechanism mitigates wear-out failures and extends memory endurance by mapping approximate data onto blocks that have exhausted their hardware error correction resources. Simulations show that reduced-precision writes in multilevel phase-change memory cells can be 1.7 × faster on average and using failed blocks can improve array lifetime by 23% on average with quality loss under 10%.","PeriodicalId":50918,"journal":{"name":"ACM Transactions on Computer Systems","volume":"58 1","pages":"9:1-9:23"},"PeriodicalIF":2.0000,"publicationDate":"2014-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Computer Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/2644808","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 1

Abstract

Memories today expose an all-or-nothing correctness model that incurs significant costs in performance, energy, area, and design complexity. But not all applications need high-precision storage for all of their data structures all of the time. This article proposes mechanisms that enable applications to store data approximately and shows that doing so can improve the performance, lifetime, or density of solid-state memories. We propose two mechanisms. The first allows errors in multilevel cells by reducing the number of programming pulses used to write them. The second mechanism mitigates wear-out failures and extends memory endurance by mapping approximate data onto blocks that have exhausted their hardware error correction resources. Simulations show that reduced-precision writes in multilevel phase-change memory cells can be 1.7 × faster on average and using failed blocks can improve array lifetime by 23% on average with quality loss under 10%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
固态存储器中的近似存储
今天的内存暴露了一种要么全有要么全无的正确性模型,这种模型在性能、能源、面积和设计复杂性方面付出了巨大的代价。但并不是所有的应用程序都需要高精度存储所有的数据结构。本文提出了使应用程序能够近似地存储数据的机制,并展示了这样做可以提高固态存储器的性能、寿命或密度。我们提出两种机制。第一种方法通过减少用于写入的编程脉冲的数量,允许在多层单元中出现错误。第二种机制通过将近似数据映射到已经耗尽其硬件纠错资源的块上,减轻了损耗故障并扩展了内存持久性。仿真结果表明,在多级相变存储单元中,降低精度的写入速度平均提高1.7倍,使用失效块可使阵列寿命平均提高23%,质量损失低于10%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACM Transactions on Computer Systems
ACM Transactions on Computer Systems 工程技术-计算机:理论方法
CiteScore
4.00
自引率
0.00%
发文量
7
审稿时长
1 months
期刊介绍: ACM Transactions on Computer Systems (TOCS) presents research and development results on the design, implementation, analysis, evaluation, and use of computer systems and systems software. The term "computer systems" is interpreted broadly and includes operating systems, systems architecture and hardware, distributed systems, optimizing compilers, and the interaction between systems and computer networks. Articles appearing in TOCS will tend either to present new techniques and concepts, or to report on experiences and experiments with actual systems. Insights useful to system designers, builders, and users will be emphasized. TOCS publishes research and technical papers, both short and long. It includes technical correspondence to permit commentary on technical topics and on previously published papers.
期刊最新文献
PMAlloc: A Holistic Approach to Improving Persistent Memory Allocation Trinity: High-Performance and Reliable Mobile Emulation through Graphics Projection Hardware-software Collaborative Tiered-memory Management Framework for Virtualization Diciclo: Flexible User-level Services for Efficient Multitenant Isolation Modeling the Interplay between Loop Tiling and Fusion in Optimizing Compilers Using Affine Relations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1