Analysis of GaAs solar cells at High MOCVD growth rates

K. Schmieder, M. Yakes, C. Bailey, Z. Pulwin, M. Lumb, L. Hirst, M. González, S. Hubbard, C. Ebert, R. Walters
{"title":"Analysis of GaAs solar cells at High MOCVD growth rates","authors":"K. Schmieder, M. Yakes, C. Bailey, Z. Pulwin, M. Lumb, L. Hirst, M. González, S. Hubbard, C. Ebert, R. Walters","doi":"10.1109/PVSC.2014.6925345","DOIUrl":null,"url":null,"abstract":"Single junction GaAs solar cells grown by MOCVD are fabricated over a range of growth rates targeting up to 56 μm/hr in order to evaluate the effect on photovoltaic device performance. MOCVD recipe conditions are provided. Dopant incorporation efficiency is found to increase at high growth rates, potentially due to reduced Zn desorption as the time required to deposit a monolayer of GaAs is reduced. Device results are characterized by light and dark-IV as well as external quantum efficiency and verified against bulk minority carrier lifetime data from time-resolved photoluminescence. High growth rate solar cells degrade less than 4% relative to baseline devices with Voc and Jsc losses of 1% and 3%, respectively. The comparison suggests that both bulk Shockley Read Hall (SRH) lifetime and surface recombination velocity (SRV) are affected by growth rate and contribute to a reduction in performance.","PeriodicalId":6649,"journal":{"name":"2014 IEEE 40th Photovoltaic Specialist Conference (PVSC)","volume":"69 1","pages":"2130-2133"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 40th Photovoltaic Specialist Conference (PVSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PVSC.2014.6925345","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

Single junction GaAs solar cells grown by MOCVD are fabricated over a range of growth rates targeting up to 56 μm/hr in order to evaluate the effect on photovoltaic device performance. MOCVD recipe conditions are provided. Dopant incorporation efficiency is found to increase at high growth rates, potentially due to reduced Zn desorption as the time required to deposit a monolayer of GaAs is reduced. Device results are characterized by light and dark-IV as well as external quantum efficiency and verified against bulk minority carrier lifetime data from time-resolved photoluminescence. High growth rate solar cells degrade less than 4% relative to baseline devices with Voc and Jsc losses of 1% and 3%, respectively. The comparison suggests that both bulk Shockley Read Hall (SRH) lifetime and surface recombination velocity (SRV) are affected by growth rate and contribute to a reduction in performance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高MOCVD生长速率下GaAs太阳能电池的分析
为了评估MOCVD对光伏器件性能的影响,在高达56 μm/hr的生长速率范围内制备了MOCVD生长的单结GaAs太阳能电池。提供了MOCVD的配方条件。研究发现,在高生长速率下,掺杂剂的掺入效率会增加,这可能是由于沉积单层砷化镓所需的时间减少了Zn的脱附。器件结果具有光和暗iv以及外部量子效率的特征,并与时间分辨光致发光的大量少数载流子寿命数据进行了验证。与Voc和Jsc损失分别为1%和3%的基准器件相比,高生长速率太阳能电池的降解率低于4%。对比表明,体积肖克利-里德-霍尔(SRH)寿命和表面复合速度(SRV)都受到生长速率的影响,并导致性能下降。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Rapid characterization of extended defects in III–V/Si by electron channeling contrast imaging Transport modeling of InGaN/GaN multiple quantum well solar cells Integration of PV into the energy system: Challenges and measures for generation and load management Determination of a minimum soiling level to affect photovoltaic devices Optical emission spectroscopy of High Power Impulse Magnetron Sputtering (HiPIMS) of CIGS thin films
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1