Waldemar Preis , Annika Bestehorn , Johannes Buchner , Martin Haslbeck
{"title":"An alternative splice variant of human αA-crystallin modulates the oligomer ensemble and the chaperone activity of α-crystallins","authors":"Waldemar Preis , Annika Bestehorn , Johannes Buchner , Martin Haslbeck","doi":"10.1007/s12192-017-0772-2","DOIUrl":null,"url":null,"abstract":"<div><div>In humans, ten genes encode small heat shock proteins with lens αA-crystallin and αB-crystallin representing two of the most prominent members. The canonical isoforms of αA-crystallin and αB-crystallin collaborate in the eye lens to prevent irreversible protein aggregation and preserve visual acuity. α-Crystallins form large polydisperse homo-oligomers and hetero-oligomers and as part of the proteostasis system bind substrate proteins in non-native conformations, thereby stabilizing them. Here, we analyzed a previously uncharacterized, alternative splice variant (isoform 2) of human αA-crystallin with an exchanged N-terminal sequence. This variant shows the characteristic α-crystallin secondary structure, exists on its own predominantly in a monomer–dimer equilibrium, and displays only low chaperone activity. However, the variant is able to integrate into higher order oligomers of canonical αA-crystallin and αB-crystallin as well as their hetero-oligomer. The presence of the variant leads to the formation of new types of higher order hetero-oligomers with an overall decreased number of subunits and enhanced chaperone activity. Thus, alternative mRNA splicing of human αA-crystallin leads to an additional, formerly not characterized αA-crystallin species which is able to modulate the properties of the canonical ensemble of α-crystallin oligomers.</div></div>","PeriodicalId":9684,"journal":{"name":"Cell Stress & Chaperones","volume":"22 4","pages":"Pages 541-552"},"PeriodicalIF":3.2000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5465031/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Stress & Chaperones","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1355814523002067","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In humans, ten genes encode small heat shock proteins with lens αA-crystallin and αB-crystallin representing two of the most prominent members. The canonical isoforms of αA-crystallin and αB-crystallin collaborate in the eye lens to prevent irreversible protein aggregation and preserve visual acuity. α-Crystallins form large polydisperse homo-oligomers and hetero-oligomers and as part of the proteostasis system bind substrate proteins in non-native conformations, thereby stabilizing them. Here, we analyzed a previously uncharacterized, alternative splice variant (isoform 2) of human αA-crystallin with an exchanged N-terminal sequence. This variant shows the characteristic α-crystallin secondary structure, exists on its own predominantly in a monomer–dimer equilibrium, and displays only low chaperone activity. However, the variant is able to integrate into higher order oligomers of canonical αA-crystallin and αB-crystallin as well as their hetero-oligomer. The presence of the variant leads to the formation of new types of higher order hetero-oligomers with an overall decreased number of subunits and enhanced chaperone activity. Thus, alternative mRNA splicing of human αA-crystallin leads to an additional, formerly not characterized αA-crystallin species which is able to modulate the properties of the canonical ensemble of α-crystallin oligomers.
期刊介绍:
Cell Stress and Chaperones is an integrative journal that bridges the gap between laboratory model systems and natural populations. The journal captures the eclectic spirit of the cellular stress response field in a single, concentrated source of current information. Major emphasis is placed on the effects of climate change on individual species in the natural environment and their capacity to adapt. This emphasis expands our focus on stress biology and medicine by linking climate change effects to research on cellular stress responses of animals, micro-organisms and plants.