An alternative splice variant of human αA-crystallin modulates the oligomer ensemble and the chaperone activity of α-crystallins

IF 3.2 3区 生物学 Q3 CELL BIOLOGY Cell Stress & Chaperones Pub Date : 2017-07-01 DOI:10.1007/s12192-017-0772-2
Waldemar Preis , Annika Bestehorn , Johannes Buchner , Martin Haslbeck
{"title":"An alternative splice variant of human αA-crystallin modulates the oligomer ensemble and the chaperone activity of α-crystallins","authors":"Waldemar Preis ,&nbsp;Annika Bestehorn ,&nbsp;Johannes Buchner ,&nbsp;Martin Haslbeck","doi":"10.1007/s12192-017-0772-2","DOIUrl":null,"url":null,"abstract":"<div><div>In humans, ten genes encode small heat shock proteins with lens αA-crystallin and αB-crystallin representing two of the most prominent members. The canonical isoforms of αA-crystallin and αB-crystallin collaborate in the eye lens to prevent irreversible protein aggregation and preserve visual acuity. α-Crystallins form large polydisperse homo-oligomers and hetero-oligomers and as part of the proteostasis system bind substrate proteins in non-native conformations, thereby stabilizing them. Here, we analyzed a previously uncharacterized, alternative splice variant (isoform 2) of human αA-crystallin with an exchanged N-terminal sequence. This variant shows the characteristic α-crystallin secondary structure, exists on its own predominantly in a monomer–dimer equilibrium, and displays only low chaperone activity. However, the variant is able to integrate into higher order oligomers of canonical αA-crystallin and αB-crystallin as well as their hetero-oligomer. The presence of the variant leads to the formation of new types of higher order hetero-oligomers with an overall decreased number of subunits and enhanced chaperone activity. Thus, alternative mRNA splicing of human αA-crystallin leads to an additional, formerly not characterized αA-crystallin species which is able to modulate the properties of the canonical ensemble of α-crystallin oligomers.</div></div>","PeriodicalId":9684,"journal":{"name":"Cell Stress & Chaperones","volume":"22 4","pages":"Pages 541-552"},"PeriodicalIF":3.2000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5465031/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Stress & Chaperones","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1355814523002067","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

In humans, ten genes encode small heat shock proteins with lens αA-crystallin and αB-crystallin representing two of the most prominent members. The canonical isoforms of αA-crystallin and αB-crystallin collaborate in the eye lens to prevent irreversible protein aggregation and preserve visual acuity. α-Crystallins form large polydisperse homo-oligomers and hetero-oligomers and as part of the proteostasis system bind substrate proteins in non-native conformations, thereby stabilizing them. Here, we analyzed a previously uncharacterized, alternative splice variant (isoform 2) of human αA-crystallin with an exchanged N-terminal sequence. This variant shows the characteristic α-crystallin secondary structure, exists on its own predominantly in a monomer–dimer equilibrium, and displays only low chaperone activity. However, the variant is able to integrate into higher order oligomers of canonical αA-crystallin and αB-crystallin as well as their hetero-oligomer. The presence of the variant leads to the formation of new types of higher order hetero-oligomers with an overall decreased number of subunits and enhanced chaperone activity. Thus, alternative mRNA splicing of human αA-crystallin leads to an additional, formerly not characterized αA-crystallin species which is able to modulate the properties of the canonical ensemble of α-crystallin oligomers.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
人类αA-结晶素的另一种剪接变体可调节α-结晶素的寡聚体组合和伴侣活性。
在人类中,有十个基因编码小型热休克蛋白,其中晶状体αA-结晶素和αB-结晶素是最重要的两个成员。αA-结晶素和αB-结晶素的典型异构体在眼晶状体中相互协作,防止蛋白质不可逆的聚集,保持视力敏锐度。α-结晶素会形成大的多分散同源异构体和异源同构体,作为蛋白稳态系统的一部分,它们会以非原生构象结合底物蛋白,从而稳定底物蛋白。在这里,我们分析了一种先前未定性的、具有交换 N 端序列的人类 αA 结晶蛋白替代剪接变体(异构体 2)。该变体显示出特征性的α-结晶素二级结构,其自身主要以单体-二聚体平衡的形式存在,并且只显示出较低的伴侣活性。不过,变体能够整合到标准αA-结晶素和αB-结晶素的高阶寡聚体以及它们的异构寡聚体中。变体的存在会导致形成新型的高阶异构体,亚基的总体数量减少,伴侣活性增强。因此,人类αA-结晶素的 mRNA 替代剪接导致了一种以前未被描述的额外的αA-结晶素物种,它能够调节α-结晶素寡聚体的典型组合的特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Cell Stress & Chaperones
Cell Stress & Chaperones 生物-细胞生物学
CiteScore
7.60
自引率
2.60%
发文量
59
审稿时长
6-12 weeks
期刊介绍: Cell Stress and Chaperones is an integrative journal that bridges the gap between laboratory model systems and natural populations. The journal captures the eclectic spirit of the cellular stress response field in a single, concentrated source of current information. Major emphasis is placed on the effects of climate change on individual species in the natural environment and their capacity to adapt. This emphasis expands our focus on stress biology and medicine by linking climate change effects to research on cellular stress responses of animals, micro-organisms and plants.
期刊最新文献
Increased FICD-mediated protein AMPylation triggers conserved ER stress signaling across species. Embracing diversity: PTMs, the chaperone code, and the emergence of new chaperone entities. Distribution and evolutionary significance of the DnaK-DnaJ-GrpE (KJE) chaperone system in archaea The 13th International Symposium on Heat Shock Proteins in Biology, Medicine and the Environment: Honoring Legacy, Celebrating Scientific Advances, and Fostering Collaboration. Transcriptional responses to proteotoxic stressors are profoundly diverse and tissue-specific
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1