Gender classification system for half face images using multi manifold discriminant analysis

Kanwal Deep Kaur, P. Rai, P. Khanna
{"title":"Gender classification system for half face images using multi manifold discriminant analysis","authors":"Kanwal Deep Kaur, P. Rai, P. Khanna","doi":"10.1109/CONFLUENCE.2017.7943221","DOIUrl":null,"url":null,"abstract":"Recognizing the gender from the half face image is a challenging problem in the field of computer vision. This paper investigates the issue and proposes a gender classification system that works for full-face images to half face images. In this manuscript, a Discrete Wavelet Transform (DWT) followed by MMDA is used for feature extraction. The proposed approach uses DWT to gather the potential information from the face images. Support Vector Machine (SVM) and k-NN classifiers are used to finds the features that can discriminate between male and female. The proposed method is evaluated on FERET and FEI databases and the experimental result shows that the proposed technique achieves the gender classification target with more than 94% accuracy for both half face and full-face images.","PeriodicalId":6651,"journal":{"name":"2017 7th International Conference on Cloud Computing, Data Science & Engineering - Confluence","volume":"21 1","pages":"595-598"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 7th International Conference on Cloud Computing, Data Science & Engineering - Confluence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CONFLUENCE.2017.7943221","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Recognizing the gender from the half face image is a challenging problem in the field of computer vision. This paper investigates the issue and proposes a gender classification system that works for full-face images to half face images. In this manuscript, a Discrete Wavelet Transform (DWT) followed by MMDA is used for feature extraction. The proposed approach uses DWT to gather the potential information from the face images. Support Vector Machine (SVM) and k-NN classifiers are used to finds the features that can discriminate between male and female. The proposed method is evaluated on FERET and FEI databases and the experimental result shows that the proposed technique achieves the gender classification target with more than 94% accuracy for both half face and full-face images.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于多流形判别分析的半人脸性别分类系统
从半人脸图像中识别性别是计算机视觉领域的一个具有挑战性的问题。本文对这一问题进行了研究,提出了一种适用于全脸图像和半脸图像的性别分类系统。在本文中,使用离散小波变换(DWT)和MMDA进行特征提取。该方法利用小波变换从人脸图像中提取潜在信息。使用支持向量机(SVM)和k-NN分类器找到可以区分男性和女性的特征。在FERET和FEI数据库上对该方法进行了评价,实验结果表明,该方法在半脸和全脸图像上均达到了94%以上的性别分类目标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hydrological Modelling to Inform Forest Management: Moving Beyond Equivalent Clearcut Area Enhanced feature mining and classifier models to predict customer churn for an E-retailer Towards the practical design of performance-aware resilient wireless NoC architectures Adaptive virtual MIMO single cluster optimization in a small cell Software effort estimation using machine learning techniques
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1