Investigation of surface hardness and roughness on formability of aluminum alloy sheet AA2024-T3 subjected to the shot peening process by silica shots

IF 0.7 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Journal of metals, materials and minerals Pub Date : 2023-03-28 DOI:10.55713/jmmm.v33i1.1594
Jurarat Sawangpan, Sansot Panich, Tanakorn Jantarasricha, A. Khantachawana
{"title":"Investigation of surface hardness and roughness on formability of aluminum alloy sheet AA2024-T3 subjected to the shot peening process by silica shots","authors":"Jurarat Sawangpan, Sansot Panich, Tanakorn Jantarasricha, A. Khantachawana","doi":"10.55713/jmmm.v33i1.1594","DOIUrl":null,"url":null,"abstract":"Shot peening is one type of modified surface treatment that produces a residual compressive stress on the material subsurface and improves surface properties while generating plastic deformation on the surface. This research work aims to improve surface properties, which include the enhanced material formability of aluminum alloy 2024-T3 sheet having 1.2 mm of thickness, by providing residual compressive stress on the surface using the shot peening process, which uses silica particles of 0.1 mm in diameter. First, shot peening was performed using various process parameters: compressed air, distance from nozzle to target, and duration time. Based on the obtained peening sheet, the surface hardness and roughness tests were experimentally performed on the peened surfaces. Additionally, the residual tension created in the sheet after the shot peening is calculated using the X-ray diffraction technique. Consequently, the shot-peened and unpeened sheets were put through hole expansion and Erichsen cupping tests to compare the results of the formability between the shot-peened and unpeened sheets. It was found that peened sheets had a low surface roughness and increased surface hardness, which is better than the unpeened sheet. Moreover, the residual compressive stresses were higher than on the original sheet. Last, the shot peening condition, which changed the surface properties the most, was tested on the hole expansion and Ericshen cupping tests, where the formability results were very significant.","PeriodicalId":16459,"journal":{"name":"Journal of metals, materials and minerals","volume":"3 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of metals, materials and minerals","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55713/jmmm.v33i1.1594","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Shot peening is one type of modified surface treatment that produces a residual compressive stress on the material subsurface and improves surface properties while generating plastic deformation on the surface. This research work aims to improve surface properties, which include the enhanced material formability of aluminum alloy 2024-T3 sheet having 1.2 mm of thickness, by providing residual compressive stress on the surface using the shot peening process, which uses silica particles of 0.1 mm in diameter. First, shot peening was performed using various process parameters: compressed air, distance from nozzle to target, and duration time. Based on the obtained peening sheet, the surface hardness and roughness tests were experimentally performed on the peened surfaces. Additionally, the residual tension created in the sheet after the shot peening is calculated using the X-ray diffraction technique. Consequently, the shot-peened and unpeened sheets were put through hole expansion and Erichsen cupping tests to compare the results of the formability between the shot-peened and unpeened sheets. It was found that peened sheets had a low surface roughness and increased surface hardness, which is better than the unpeened sheet. Moreover, the residual compressive stresses were higher than on the original sheet. Last, the shot peening condition, which changed the surface properties the most, was tested on the hole expansion and Ericshen cupping tests, where the formability results were very significant.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
采用硅丸喷丸工艺对AA2024-T3铝合金板材表面硬度和粗糙度对成形性的影响
喷丸强化是一种改性表面处理,它在材料表面下产生残余压应力,改善表面性能,同时在表面上产生塑性变形。本研究工作旨在通过使用直径为0.1 mm的二氧化硅颗粒,在表面施加残余压应力,从而改善1.2 mm厚度的铝合金2024-T3板材的表面性能,包括增强材料的成形性。首先,使用不同的工艺参数进行喷丸强化:压缩空气、喷嘴到目标的距离和持续时间。在得到喷丸板的基础上,对喷丸表面进行了表面硬度和粗糙度测试。此外,使用x射线衍射技术计算了喷丸强化后板材中产生的残余张力。为此,对喷丸和未喷丸板材进行扩孔试验和Erichsen拔罐试验,比较喷丸和未喷丸板材的成形性能。结果表明,喷丸处理后的板材表面粗糙度较低,硬度有所提高,优于未喷丸处理的板材。此外,残余压应力高于原始板。最后,在扩孔和埃里克森拔罐试验中,对表面性能变化最大的喷丸强化条件进行了测试,成形性能结果非常显著。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of metals, materials and minerals
Journal of metals, materials and minerals MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
1.40
自引率
11.10%
发文量
0
期刊介绍: Journal of Metals, Materials and Minerals (JMMM) is a double-blind peer-reviewed international journal published 4 issues per year (starting from 2019), in March, June, September, and December, aims at disseminating advanced knowledge in the fields to academia, professionals and industrialists. JMMM publishes original research articles as well as review articles related to research and development in science, technology and engineering of metals, materials and minerals, including composite & hybrid materials, concrete and cement-based systems, ceramics, glass, refractory, semiconductors, polymeric & polymer-based materials, conventional & technical textiles, nanomaterials, thin films, biomaterials, and functional materials.
期刊最新文献
Photocatalytic degradation of ciprofloxacin drug utilizing novel PVDF/polyaniline/ lanthanum strontium manganate@Ag composites Dispersion mechanism of nanoparticles and its role on mechanical, thermal and electrical properties of epoxy nanocomposites - A Review Sustainable innovation in ballistic vest design: Exploration of polyurethane-coated hemp fabrics and reinforced sandwich epoxy composites against 9 mm and .40 S&W bullets Electrical and water resistance properties of conductive paste based on gold/silver composites Review of materials, functional components, fabrication technologies and assembling characteristics for polymer electrolyte membrane fuel cells (PEMFCs) – An update
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1