Shenyang Huang, Jacob Danovitch, Guillaume Rabusseau, Reihaneh Rabbany
{"title":"Fast and Attributed Change Detection on Dynamic Graphs with Density of States","authors":"Shenyang Huang, Jacob Danovitch, Guillaume Rabusseau, Reihaneh Rabbany","doi":"10.48550/arXiv.2305.08750","DOIUrl":null,"url":null,"abstract":"How can we detect traffic disturbances from international flight transportation logs or changes to collaboration dynamics in academic networks? These problems can be formulated as detecting anomalous change points in a dynamic graph. Current solutions do not scale well to large real-world graphs, lack robustness to large amounts of node additions/deletions, and overlook changes in node attributes. To address these limitations, we propose a novel spectral method: Scalable Change Point Detection (SCPD). SCPD generates an embedding for each graph snapshot by efficiently approximating the distribution of the Laplacian spectrum at each step. SCPD can also capture shifts in node attributes by tracking correlations between attributes and eigenvectors. Through extensive experiments using synthetic and real-world data, we show that SCPD (a) achieves state-of-the art performance, (b) is significantly faster than the state-of-the-art methods and can easily process millions of edges in a few CPU minutes, (c) can effectively tackle a large quantity of node attributes, additions or deletions and (d) discovers interesting events in large real-world graphs. The code is publicly available at https://github.com/shenyangHuang/SCPD.git","PeriodicalId":91995,"journal":{"name":"Advances in Knowledge Discovery and Data Mining : 21st Pacific-Asia Conference, PAKDD 2017, Jeju, South Korea, May 23-26, 2017, Proceedings. Part I. Pacific-Asia Conference on Knowledge Discovery and Data Mining (21st : 2017 : Cheju Isl...","volume":"99 1","pages":"15-26"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Knowledge Discovery and Data Mining : 21st Pacific-Asia Conference, PAKDD 2017, Jeju, South Korea, May 23-26, 2017, Proceedings. Part I. Pacific-Asia Conference on Knowledge Discovery and Data Mining (21st : 2017 : Cheju Isl...","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2305.08750","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
How can we detect traffic disturbances from international flight transportation logs or changes to collaboration dynamics in academic networks? These problems can be formulated as detecting anomalous change points in a dynamic graph. Current solutions do not scale well to large real-world graphs, lack robustness to large amounts of node additions/deletions, and overlook changes in node attributes. To address these limitations, we propose a novel spectral method: Scalable Change Point Detection (SCPD). SCPD generates an embedding for each graph snapshot by efficiently approximating the distribution of the Laplacian spectrum at each step. SCPD can also capture shifts in node attributes by tracking correlations between attributes and eigenvectors. Through extensive experiments using synthetic and real-world data, we show that SCPD (a) achieves state-of-the art performance, (b) is significantly faster than the state-of-the-art methods and can easily process millions of edges in a few CPU minutes, (c) can effectively tackle a large quantity of node attributes, additions or deletions and (d) discovers interesting events in large real-world graphs. The code is publicly available at https://github.com/shenyangHuang/SCPD.git