{"title":"Activity-based ridesharing: increasing flexibility by time geography","authors":"Yaoli Wang, Ronny J. Kutadinata, S. Winter","doi":"10.1145/2996913.2997002","DOIUrl":null,"url":null,"abstract":"Ridesharing is an emerging travel mode that reduces the total amount of traffic on the road by combining people's travels together. While present ridesharing algorithms are trip-based, this paper aims to achieve significantly higher matching chances by a novel, activity-based algorithm. The algorithm expands the potential destination choice set by considering alternative destinations that are within given space-time budgets and would provide a similar activity function as the originals. In order to address the increased combinatorial complexity of trip chains, the paper introduces an efficient space-time filter on the foundations of time geography to search for accessible resources. Globally optimal matching is achieved by binary linear programming. The ridesharing algorithm is tested with a series of realistic scenarios of different population sizes. The encouraging results demonstrate that the matching rate by activity-based ridesharing is significantly increased from the baseline scenario of traditional trip-based ridesharing.","PeriodicalId":20525,"journal":{"name":"Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems","volume":"75 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2016-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2996913.2997002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30
Abstract
Ridesharing is an emerging travel mode that reduces the total amount of traffic on the road by combining people's travels together. While present ridesharing algorithms are trip-based, this paper aims to achieve significantly higher matching chances by a novel, activity-based algorithm. The algorithm expands the potential destination choice set by considering alternative destinations that are within given space-time budgets and would provide a similar activity function as the originals. In order to address the increased combinatorial complexity of trip chains, the paper introduces an efficient space-time filter on the foundations of time geography to search for accessible resources. Globally optimal matching is achieved by binary linear programming. The ridesharing algorithm is tested with a series of realistic scenarios of different population sizes. The encouraging results demonstrate that the matching rate by activity-based ridesharing is significantly increased from the baseline scenario of traditional trip-based ridesharing.