A Spark™ Based Client for Synchrophasor Data Stream Processing

V. Menon, V. S. Sajith Variyar, K. Soman, E. Gopalakrishnan, S. K. Kottayil, Md Shoaib Almas, L. Nordström
{"title":"A Spark™ Based Client for Synchrophasor Data Stream Processing","authors":"V. Menon, V. S. Sajith Variyar, K. Soman, E. Gopalakrishnan, S. K. Kottayil, Md Shoaib Almas, L. Nordström","doi":"10.23919/ICUE-GESD.2018.8635650","DOIUrl":null,"url":null,"abstract":"The SCADA based monitoring systems, having a very low sampling of one reading per 2-4 seconds is known to produce roughly 4.3 Tera Bytes (TiBs) of data annually. With synchrophasor technology, this will go up at least 100 times more as the rate of streaming is as high as 50/100 (60/120) Hz. Phasor data concentrators (PDCs) transmit byte streams encapsulating a comprehensive list of power system parameter including multiple phasor measurements, instantaneous frequency estimates, rate of change of frequency and several analog and digital quantities; this high volume and velocity of data makes it truly ‘Big Data’. This helps in making the power grid a lot more observable, enabling real-time monitoring of crucial grid events such as voltage stability, grid stress and transient oscillations. Synchrophasor technology uses the IEEE C37.118.2-2011™ Phasor Measurement Unit (PMU) / PDC communication protocol for data exchange which has no direct interface with any contemporary big data stream APIs or protocols. In this paper we propose a streaming interface in Apache Spark™, a popular big data platform, using Scala programming language, implementing a complete IEEE C37.118.2-2011™ client inside a stream receiver so that we can effortlessly receive synchrophasor data directly to Spark™ applications for real-time processing and archiving.","PeriodicalId":6584,"journal":{"name":"2018 International Conference and Utility Exhibition on Green Energy for Sustainable Development (ICUE)","volume":"42 1","pages":"1-9"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference and Utility Exhibition on Green Energy for Sustainable Development (ICUE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ICUE-GESD.2018.8635650","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The SCADA based monitoring systems, having a very low sampling of one reading per 2-4 seconds is known to produce roughly 4.3 Tera Bytes (TiBs) of data annually. With synchrophasor technology, this will go up at least 100 times more as the rate of streaming is as high as 50/100 (60/120) Hz. Phasor data concentrators (PDCs) transmit byte streams encapsulating a comprehensive list of power system parameter including multiple phasor measurements, instantaneous frequency estimates, rate of change of frequency and several analog and digital quantities; this high volume and velocity of data makes it truly ‘Big Data’. This helps in making the power grid a lot more observable, enabling real-time monitoring of crucial grid events such as voltage stability, grid stress and transient oscillations. Synchrophasor technology uses the IEEE C37.118.2-2011™ Phasor Measurement Unit (PMU) / PDC communication protocol for data exchange which has no direct interface with any contemporary big data stream APIs or protocols. In this paper we propose a streaming interface in Apache Spark™, a popular big data platform, using Scala programming language, implementing a complete IEEE C37.118.2-2011™ client inside a stream receiver so that we can effortlessly receive synchrophasor data directly to Spark™ applications for real-time processing and archiving.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于Spark™的同步数据流处理客户端
基于SCADA的监测系统,具有每2-4秒读取一次的非常低的采样,已知每年产生大约4.3兆字节(TiBs)的数据。使用同步相量技术,当流速率高达50/100 (60/120)Hz时,这将至少增加100倍。相量数据集中器(PDCs)传输封装了电力系统参数的综合列表的字节流,包括多个相量测量,瞬时频率估计,频率变化率和几个模拟和数字量;数据的高容量和速度使其成为真正的“大数据”。这有助于使电网更易于观察,实现对关键电网事件的实时监控,如电压稳定性、电网应力和瞬态振荡。同步相量技术使用IEEE C37.118.2-2011™相量测量单元(PMU) / PDC通信协议进行数据交换,该协议与任何当代大数据流api或协议没有直接接口。在本文中,我们提出了一个流接口在Apache Spark™,一个流行的大数据平台,使用Scala编程语言,实现了一个完整的IEEE C37.118.2-2011™客户端内部的流接收器,使我们可以毫不困难地接收同步数据直接到Spark™应用程序进行实时处理和归档。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Probabilistic Analysis Approach for Large Power Systems with Renewable Resources Grid Integrated Solar Photovoltaic Array Power Plant Modeling and Simulation Hour-Ahead Solar Forecasting Program Using Back Propagation Artificial Neural Network Bhutan’s Urban Towns with Integration of Agricultural Land Use A Low Cost, Open-source IoT based 2-axis Active Solar Tracker for Smart Communities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1