Learning Interpretable Latent Dialogue Actions With Less Supervision

Q3 Environmental Science AACL Bioflux Pub Date : 2022-09-22 DOI:10.48550/arXiv.2209.11128
Vojtvech Hudevcek, Ondrej Dusek
{"title":"Learning Interpretable Latent Dialogue Actions With Less Supervision","authors":"Vojtvech Hudevcek, Ondrej Dusek","doi":"10.48550/arXiv.2209.11128","DOIUrl":null,"url":null,"abstract":"We present a novel architecture for explainable modeling of task-oriented dialogues with discrete latent variables to represent dialogue actions. Our model is based on variational recurrent neural networks (VRNN) and requires no explicit annotation of semantic information. Unlike previous works, our approach models the system and user turns separately and performs database query modeling, which makes the model applicable to task-oriented dialogues while producing easily interpretable action latent variables. We show that our model outperforms previous approaches with less supervision in terms of perplexity and BLEU on three datasets, and we propose a way to measure dialogue success without the need for expert annotation. Finally, we propose a novel way to explain semantics of the latent variables with respect to system actions.","PeriodicalId":39298,"journal":{"name":"AACL Bioflux","volume":"16 1","pages":"297-308"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AACL Bioflux","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2209.11128","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 1

Abstract

We present a novel architecture for explainable modeling of task-oriented dialogues with discrete latent variables to represent dialogue actions. Our model is based on variational recurrent neural networks (VRNN) and requires no explicit annotation of semantic information. Unlike previous works, our approach models the system and user turns separately and performs database query modeling, which makes the model applicable to task-oriented dialogues while producing easily interpretable action latent variables. We show that our model outperforms previous approaches with less supervision in terms of perplexity and BLEU on three datasets, and we propose a way to measure dialogue success without the need for expert annotation. Finally, we propose a novel way to explain semantics of the latent variables with respect to system actions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在较少监督下学习可解释的潜在对话动作
我们提出了一种新的架构,用于面向任务的对话的可解释建模,该对话具有离散的潜在变量来表示对话动作。该模型基于变分递归神经网络(VRNN),不需要对语义信息进行显式标注。与以前的工作不同,我们的方法分别为系统和用户转弯建模,并执行数据库查询建模,这使得模型适用于面向任务的对话,同时产生易于解释的动作潜在变量。我们表明,在三个数据集上,我们的模型在困惑度和BLEU方面优于之前较少监督的方法,并且我们提出了一种不需要专家注释来衡量对话成功的方法。最后,我们提出了一种新的方法来解释相对于系统动作的潜在变量的语义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
AACL Bioflux
AACL Bioflux Environmental Science-Management, Monitoring, Policy and Law
CiteScore
1.40
自引率
0.00%
发文量
0
期刊最新文献
HaRiM^+: Evaluating Summary Quality with Hallucination Risk PESE: Event Structure Extraction using Pointer Network based Encoder-Decoder Architecture Bipartite-play Dialogue Collection for Practical Automatic Evaluation of Dialogue Systems Local Structure Matters Most in Most Languages Unsupervised Domain Adaptation for Sparse Retrieval by Filling Vocabulary and Word Frequency Gaps
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1