Design considerations of HBM stacked DRAM and the memory architecture extension

Dong-Uk Lee, Kangseol Lee, Yong-jun Lee, Kyung Whan Kim, Jong Kang, Jaejin Lee, J. Chun
{"title":"Design considerations of HBM stacked DRAM and the memory architecture extension","authors":"Dong-Uk Lee, Kangseol Lee, Yong-jun Lee, Kyung Whan Kim, Jong Kang, Jaejin Lee, J. Chun","doi":"10.1109/CICC.2015.7338357","DOIUrl":null,"url":null,"abstract":"Recently, the 3D stacked memory, which is known as HBM (high bandwidth memory), using TSV process has been developed. The stacked memory structure provides increased bandwidth, low power consumption, as well as small form factor. There are many design challenges, such as multi-channel operation, microbump test and TSV connection scan. Various design methodology make it possible to overcome the difficulties in the development of TSV technology. Vertical stacking enables more diverse memory architecture than the flat architecture. The next generation of HBM focuses on not only the bandwidth but also the system performance enhancement by adopting pseudo channel and 8-Hi stacking. The architecture applied to the second generation HBM are introduced in this paper.","PeriodicalId":6665,"journal":{"name":"2015 IEEE Custom Integrated Circuits Conference (CICC)","volume":"58 1","pages":"1-8"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Custom Integrated Circuits Conference (CICC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CICC.2015.7338357","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

Recently, the 3D stacked memory, which is known as HBM (high bandwidth memory), using TSV process has been developed. The stacked memory structure provides increased bandwidth, low power consumption, as well as small form factor. There are many design challenges, such as multi-channel operation, microbump test and TSV connection scan. Various design methodology make it possible to overcome the difficulties in the development of TSV technology. Vertical stacking enables more diverse memory architecture than the flat architecture. The next generation of HBM focuses on not only the bandwidth but also the system performance enhancement by adopting pseudo channel and 8-Hi stacking. The architecture applied to the second generation HBM are introduced in this paper.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
HBM堆叠DRAM的设计考虑及内存架构扩展
近年来,采用TSV工艺的3D堆叠存储器被称为HBM(高带宽存储器)。堆叠式内存结构提供了更高的带宽、低功耗和小尺寸。多通道操作、微碰撞测试、TSV连接扫描等设计难题。各种设计方法使得克服TSV技术发展中的困难成为可能。垂直堆叠可以实现比平面架构更多样化的内存架构。下一代HBM不仅关注带宽,而且通过采用伪信道和8-Hi堆叠来提高系统性能。本文介绍了应用于第二代HBM的体系结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A 150nA IQ, 850mA ILOAD, 90% Efficiency over 10μA to 400mA Loading Range Introduction to Compute-in-Memory Portable and Scalable High Voltage Circuits for Automotive Applications in BiCMOS Processes ADC-based Wireline Transceiver Session 27 - Technology directions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1