CFD Analysis of Refrigeration Cycle Ejector

F. Forster, Alexander E. Deravanessian, Matthew J. Nazarian, Mariano Rubio, K. Anderson
{"title":"CFD Analysis of Refrigeration Cycle Ejector","authors":"F. Forster, Alexander E. Deravanessian, Matthew J. Nazarian, Mariano Rubio, K. Anderson","doi":"10.1115/fedsm2021-62237","DOIUrl":null,"url":null,"abstract":"\n The use of ejector cycles for increased performance and efficiency is becoming more prevalent in industry. The goal of this study is to evaluate an ejector using Computational Fluid Dynamics (CFD) to evaluate flow patterns, perform trade studies varying the type of refrigerant, and determine the entrainment ratio for each working fluid, over a range of boundary condition pressures, set at points along the ejector’s flow path. The 2012 Toyota Prius V is one of the first automobiles using an ejector cycle in their internal cabin refrigeration system. The DENSO Corporation ejector hardware was used as the basis for the creation of geometry for the CFD mode of the ejector. Three working fluids were simulated, R-134a, R-245fa, and R-1235yf. The primary findings of this study were as follows. The CFD study here indicates that R-245fa performs the best out of the three working fluids, when examining their entrainment ratios (ratio of secondary to primary flow rates in the ejector). For all three working fluids, the entrainment ratio was seen to peak performance at an ejector inlet pressure of 1.75 × 105 Pa. The ejector mixing chamber pressure and ejector outlet pressure boundary conditions also witnessed a rise in entrainment ratios, during an increase of their respective pressure values.","PeriodicalId":23636,"journal":{"name":"Volume 2: Fluid Applications and Systems; Fluid Measurement and Instrumentation","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 2: Fluid Applications and Systems; Fluid Measurement and Instrumentation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/fedsm2021-62237","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The use of ejector cycles for increased performance and efficiency is becoming more prevalent in industry. The goal of this study is to evaluate an ejector using Computational Fluid Dynamics (CFD) to evaluate flow patterns, perform trade studies varying the type of refrigerant, and determine the entrainment ratio for each working fluid, over a range of boundary condition pressures, set at points along the ejector’s flow path. The 2012 Toyota Prius V is one of the first automobiles using an ejector cycle in their internal cabin refrigeration system. The DENSO Corporation ejector hardware was used as the basis for the creation of geometry for the CFD mode of the ejector. Three working fluids were simulated, R-134a, R-245fa, and R-1235yf. The primary findings of this study were as follows. The CFD study here indicates that R-245fa performs the best out of the three working fluids, when examining their entrainment ratios (ratio of secondary to primary flow rates in the ejector). For all three working fluids, the entrainment ratio was seen to peak performance at an ejector inlet pressure of 1.75 × 105 Pa. The ejector mixing chamber pressure and ejector outlet pressure boundary conditions also witnessed a rise in entrainment ratios, during an increase of their respective pressure values.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
制冷循环喷射器的CFD分析
使用喷射循环来提高性能和效率在工业中变得越来越普遍。本研究的目的是利用计算流体动力学(CFD)来评估喷射器的流动模式,进行不同制冷剂类型的贸易研究,并确定在喷射器流动路径上设置的边界条件压力范围内每种工作流体的夹带比。2012款丰田普锐斯V是首批在车内制冷系统中使用喷射循环的汽车之一。DENSO公司的弹射器硬件被用作创建弹射器CFD模型的几何结构的基础。模拟了3种工质:R-134a、R-245fa和R-1235yf。本研究的主要发现如下:CFD研究表明,在测试三种工作流体的夹带比(喷射器中二次流量与一次流量的比值)时,R-245fa的表现最好。对于所有三种工作流体,在喷射器进口压力为1.75 × 105 Pa时,夹带比达到峰值。在喷射器混合室压力和喷射器出口压力边界条件下,随着各自压力值的增加,夹带比也有所增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fluid Dynamics and Contact Stress on Hard Sealing Surface Analysis of LNG Cryogenic Ball Valve 0D Modeling of Fuel Tank for Vapor Generation Impact of Urban Microclimate on Air Conditioning Energy Consumption Using Different Convective Heat Transfer Coefficient Correlations Available in Building Energy Simulation Tools Study on Overall Design of a Vertical Take-Off and Landing Unmanned Aerial Vehicle Powered by Electric Ducted Fans Influence of the Topological Structures of the Nose of High-Speed Maglev Train on Aerodynamic Performances
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1