Hierarchical Method for Mining a Prevailing Flight Pattern in Airport Terminal Airspace

IF 1.3 4区 工程技术 Q2 ENGINEERING, AEROSPACE Journal of Aerospace Information Systems Pub Date : 2023-07-04 DOI:10.2514/1.i011263
Xiao Chu, W. Zeng, Xianghua Tan, Yadong Zhou, Dan Zhu
{"title":"Hierarchical Method for Mining a Prevailing Flight Pattern in Airport Terminal Airspace","authors":"Xiao Chu, W. Zeng, Xianghua Tan, Yadong Zhou, Dan Zhu","doi":"10.2514/1.i011263","DOIUrl":null,"url":null,"abstract":"Due to the variety of flight patterns in airport terminal airspace, as well as the high global similarity of different flight patterns entering and leaving from the same runway or corridor, it is difficult for current mainstream methods to achieve good clustering. To this end, this paper first constructs a truncated dynamic time warping (TDTW) trajectory similarity measurement to characterize different trajectory patterns with high global similarity and large local differences. Furthermore, a hierarchical flight pattern mining method is proposed, which is divided into four layers according to different characteristics. The first three layers of the method classify trajectories according to takeoff and landing types, runways, and corridors; whereas the fourth layer uses a [Formula: see text]-medoid clustering method based on TDTW, thereby making the mining process more controllable and in line with actual operation. Compared to dynamic time warping, the experimental results show that the intraclass compactness and interclass separation of the cluster obtained by the proposed method have decreased and increased by 44.6 and 20.1%, respectively, and the overall performance has improved by 54.1%. More refined and reasonable flight patterns have been obtained.","PeriodicalId":50260,"journal":{"name":"Journal of Aerospace Information Systems","volume":"08 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Aerospace Information Systems","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2514/1.i011263","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

Abstract

Due to the variety of flight patterns in airport terminal airspace, as well as the high global similarity of different flight patterns entering and leaving from the same runway or corridor, it is difficult for current mainstream methods to achieve good clustering. To this end, this paper first constructs a truncated dynamic time warping (TDTW) trajectory similarity measurement to characterize different trajectory patterns with high global similarity and large local differences. Furthermore, a hierarchical flight pattern mining method is proposed, which is divided into four layers according to different characteristics. The first three layers of the method classify trajectories according to takeoff and landing types, runways, and corridors; whereas the fourth layer uses a [Formula: see text]-medoid clustering method based on TDTW, thereby making the mining process more controllable and in line with actual operation. Compared to dynamic time warping, the experimental results show that the intraclass compactness and interclass separation of the cluster obtained by the proposed method have decreased and increased by 44.6 and 20.1%, respectively, and the overall performance has improved by 54.1%. More refined and reasonable flight patterns have been obtained.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
挖掘机场航站楼空域流行飞行模式的分层方法
由于机场终端空域飞行模式的多样性,以及从同一跑道或走廊进出的不同飞行模式具有很高的全球相似性,目前的主流方法难以实现良好的聚类。为此,本文首先构建了截断动态时间翘曲(TDTW)轨迹相似性度量,以表征具有高全局相似性和大局部差异性的不同轨迹模式。在此基础上,提出了一种层次化的飞行模式挖掘方法,根据不同的特征将其划分为四层。该方法的前三层根据起降类型、跑道和走廊对轨迹进行分类;第四层则采用了基于TDTW的[公式:见文]-媒质聚类方法,使挖掘过程更加可控,更符合实际操作。实验结果表明,与动态时间规整相比,该方法获得的聚类的类内紧密度和类间分离度分别降低了44.6%和20.1%,整体性能提高了54.1%。得到了更加精细合理的飞行模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.70
自引率
13.30%
发文量
58
审稿时长
>12 weeks
期刊介绍: This Journal is devoted to the dissemination of original archival research papers describing new theoretical developments, novel applications, and case studies regarding advances in aerospace computing, information, and networks and communication systems that address aerospace-specific issues. Issues related to signal processing, electromagnetics, antenna theory, and the basic networking hardware transmission technologies of a network are not within the scope of this journal. Topics include aerospace systems and software engineering; verification and validation of embedded systems; the field known as ‘big data,’ data analytics, machine learning, and knowledge management for aerospace systems; human-automation interaction and systems health management for aerospace systems. Applications of autonomous systems, systems engineering principles, and safety and mission assurance are of particular interest. The Journal also features Technical Notes that discuss particular technical innovations or applications in the topics described above. Papers are also sought that rigorously review the results of recent research developments. In addition to original research papers and reviews, the journal publishes articles that review books, conferences, social media, and new educational modes applicable to the scope of the Journal.
期刊最新文献
New Type-2-Fuzzy-Logic-Based Control System for the Cessna Citation X Basic Engagement Zones Advanced Wavelet Transform-Based Automated System for Drone State Identification Using Radio-Frequency Signal Integration of the Functional Hazard Assessment Within a Model-Based Systems Engineering Framework Safe Spacecraft Inspection via Deep Reinforcement Learning and Discrete Control Barrier Functions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1