PoseGU: 3D Human Pose Estimation with Novel Human Pose Generator and Unbiased Learning

S. Guan, Haiyan Lu, Linchao Zhu, Gengfa Fang
{"title":"PoseGU: 3D Human Pose Estimation with Novel Human Pose Generator and Unbiased Learning","authors":"S. Guan, Haiyan Lu, Linchao Zhu, Gengfa Fang","doi":"10.48550/arXiv.2207.03618","DOIUrl":null,"url":null,"abstract":"3D pose estimation has recently gained substantial interests in computer vision domain. Existing 3D pose estimation methods have a strong reliance on large size well-annotated 3D pose datasets, and they suffer poor model generalization on unseen poses due to limited diversity of 3D poses in training sets. In this work, we propose PoseGU, a novel human pose generator that generates diverse poses with access only to a small size of seed samples, while equipping the Counterfactual Risk Minimization to pursue an unbiased evaluation objective. Extensive experiments demonstrate PoseGU outforms almost all the state-of-the-art 3D human pose methods under consideration over three popular benchmark datasets. Empirical analysis also proves PoseGU generates 3D poses with improved data diversity and better generalization ability.","PeriodicalId":10549,"journal":{"name":"Comput. Vis. Image Underst.","volume":"84 1","pages":"103715"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comput. Vis. Image Underst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2207.03618","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

3D pose estimation has recently gained substantial interests in computer vision domain. Existing 3D pose estimation methods have a strong reliance on large size well-annotated 3D pose datasets, and they suffer poor model generalization on unseen poses due to limited diversity of 3D poses in training sets. In this work, we propose PoseGU, a novel human pose generator that generates diverse poses with access only to a small size of seed samples, while equipping the Counterfactual Risk Minimization to pursue an unbiased evaluation objective. Extensive experiments demonstrate PoseGU outforms almost all the state-of-the-art 3D human pose methods under consideration over three popular benchmark datasets. Empirical analysis also proves PoseGU generates 3D poses with improved data diversity and better generalization ability.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
PoseGU:基于新型人体姿态生成器和无偏学习的三维人体姿态估计
近年来,三维姿态估计在计算机视觉领域引起了广泛的关注。现有的三维姿态估计方法强烈依赖于大规模的、注释良好的三维姿态数据集,并且由于训练集中三维姿态的多样性有限,它们对未见姿态的模型泛化能力较差。在这项工作中,我们提出了PoseGU,这是一种新型的人体姿势生成器,它可以在只访问少量种子样本的情况下生成多种姿势,同时配备反事实风险最小化来追求公正的评估目标。大量的实验表明,在三个流行的基准数据集上,PoseGU优于几乎所有最先进的3D人体姿势方法。实证分析也证明了PoseGU生成的三维姿态具有更好的数据多样性和泛化能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Real-time distributed video analytics for privacy-aware person search PAGML: Precise Alignment Guided Metric Learning for sketch-based 3D shape retrieval Robust Teacher: Self-correcting pseudo-label-guided semi-supervised learning for object detection Unpaired sonar image denoising with simultaneous contrastive learning 3DF-FCOS: Small object detection with 3D features based on FCOS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1