A 23-to-30GHz hybrid beamforming MIMO receiver array with closed-loop multistage front-end beamformers for full-FoV dynamic and autonomous unknown signal tracking and blocker rejection
Min-Yu Huang, T. Chi, Fei Wang, Tso-Wei Li, Hua Wang
{"title":"A 23-to-30GHz hybrid beamforming MIMO receiver array with closed-loop multistage front-end beamformers for full-FoV dynamic and autonomous unknown signal tracking and blocker rejection","authors":"Min-Yu Huang, T. Chi, Fei Wang, Tso-Wei Li, Hua Wang","doi":"10.1109/ISSCC.2018.8310187","DOIUrl":null,"url":null,"abstract":"Millimeter-wave massive MIMOs leverage large array size to enhance the link budget and spatial selectivity, but their resulting narrow beamwidth substantially complicates the transmitter-receiver (TX-RX) alignment. Unlike most existing “static” applications (e.g., mm-wave HDTV transmission), many future mm-wave links will operate in highly “dynamic” environments, such as wireless AR/VR and vehicle-/drone-/machine-based links, necessitating rapid and precise beam-forming/-tracking for high link reliability and low latency. Densely deployed mm-wave nodes will also result in future congested/contested environments, requiring spatially tracking/rejecting unknown blockers (unknown frequency, angle-of-arrival AoA, or modulation).","PeriodicalId":6617,"journal":{"name":"2018 IEEE International Solid - State Circuits Conference - (ISSCC)","volume":"99 1","pages":"68-70"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"36","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Solid - State Circuits Conference - (ISSCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSCC.2018.8310187","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 36
Abstract
Millimeter-wave massive MIMOs leverage large array size to enhance the link budget and spatial selectivity, but their resulting narrow beamwidth substantially complicates the transmitter-receiver (TX-RX) alignment. Unlike most existing “static” applications (e.g., mm-wave HDTV transmission), many future mm-wave links will operate in highly “dynamic” environments, such as wireless AR/VR and vehicle-/drone-/machine-based links, necessitating rapid and precise beam-forming/-tracking for high link reliability and low latency. Densely deployed mm-wave nodes will also result in future congested/contested environments, requiring spatially tracking/rejecting unknown blockers (unknown frequency, angle-of-arrival AoA, or modulation).