{"title":"Experimental Investigation and Semi-Active Control Design of A Magnetorheological Engine Mount","authors":"S. Hosseini, J. Marzbanrad","doi":"10.32604/sv.2019.07434","DOIUrl":null,"url":null,"abstract":"In this paper; the dynamic characteristics of a semi-active magnetorheological fluid (MRF) engine mount are studied. To do so, the performance of the MRF engine mount is experimentally examined in higher frequencies (50~170 Hz) and the various amplitudes (0.01 ~ 0.2 mm). In such an examination, an MRF engine mount along with its magnetically biased is fabricated and successfully measured. In addition, the natural frequencies of the system are obtained by standard hammer modal test. For modelling the behavior of the system, a mass-spring-damper model with tuned PID coefficients based on Pessen integral of absolute error method is used. The parameters of such a model including mass, damping ratio, and stiffness are identified with the help of experimental modal tests and the recursive least square method (RLS). It is shown that using PID controller leads to reducing the vibration transmissibility in the resonance frequency (=93.45 Hz) with respect to the typical passive engine mount by a factor of 58%. The average of the vibration transmissibility decreasing is also 43% within frequency bandwidth (50~170 Hz).","PeriodicalId":49496,"journal":{"name":"Sound and Vibration","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sound and Vibration","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.32604/sv.2019.07434","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper; the dynamic characteristics of a semi-active magnetorheological fluid (MRF) engine mount are studied. To do so, the performance of the MRF engine mount is experimentally examined in higher frequencies (50~170 Hz) and the various amplitudes (0.01 ~ 0.2 mm). In such an examination, an MRF engine mount along with its magnetically biased is fabricated and successfully measured. In addition, the natural frequencies of the system are obtained by standard hammer modal test. For modelling the behavior of the system, a mass-spring-damper model with tuned PID coefficients based on Pessen integral of absolute error method is used. The parameters of such a model including mass, damping ratio, and stiffness are identified with the help of experimental modal tests and the recursive least square method (RLS). It is shown that using PID controller leads to reducing the vibration transmissibility in the resonance frequency (=93.45 Hz) with respect to the typical passive engine mount by a factor of 58%. The average of the vibration transmissibility decreasing is also 43% within frequency bandwidth (50~170 Hz).
期刊介绍:
Sound & Vibration is a journal intended for individuals with broad-based interests in noise and vibration, dynamic measurements, structural analysis, computer-aided engineering, machinery reliability, and dynamic testing. The journal strives to publish referred papers reflecting the interests of research and practical engineering on any aspects of sound and vibration. Of particular interest are papers that report analytical, numerical and experimental methods of more relevance to practical applications.
Papers are sought that contribute to the following general topics:
-broad-based interests in noise and vibration-
dynamic measurements-
structural analysis-
computer-aided engineering-
machinery reliability-
dynamic testing