Primer Selection Methods for Detection of Genomic Inversions and Deletions via PAMP

B. Dasgupta, Jin-Hunh Jun, I. Măndoiu
{"title":"Primer Selection Methods for Detection of Genomic Inversions and Deletions via PAMP","authors":"B. Dasgupta, Jin-Hunh Jun, I. Măndoiu","doi":"10.1142/9781848161092_0036","DOIUrl":null,"url":null,"abstract":"Primer Approximation Multiplex PCR (PAMP) is a recently introduced experimental technique for detecting large-scale cancer genome lesions such as inversions and deletions from heterogeneous samples containing a mixture of cancer and normal cells. In this paper we give integer linear programming formulations for the problem of selecting sets of PAMP primers that minimize detection failure probability. We also show that PAMP primer selection for detection of anchored deletions cannot be approximated within a factor of 2 \", and give a 2-approximation algorithm for a special case of the problem. Experimental results show that our ILP formulations can be used to optimally solve medium size instances of the inversion detection problem, and that heuristics based on iteratively solving ILP formulations for a one-sided version of the problem give near-optimal solutions for anchored deletion detection with highly scalable runtime.","PeriodicalId":74513,"journal":{"name":"Proceedings of the ... Asia-Pacific bioinformatics conference","volume":"60 1","pages":"353-362"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... Asia-Pacific bioinformatics conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/9781848161092_0036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Primer Approximation Multiplex PCR (PAMP) is a recently introduced experimental technique for detecting large-scale cancer genome lesions such as inversions and deletions from heterogeneous samples containing a mixture of cancer and normal cells. In this paper we give integer linear programming formulations for the problem of selecting sets of PAMP primers that minimize detection failure probability. We also show that PAMP primer selection for detection of anchored deletions cannot be approximated within a factor of 2 ", and give a 2-approximation algorithm for a special case of the problem. Experimental results show that our ILP formulations can be used to optimally solve medium size instances of the inversion detection problem, and that heuristics based on iteratively solving ILP formulations for a one-sided version of the problem give near-optimal solutions for anchored deletion detection with highly scalable runtime.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
PAMP检测基因组反转和缺失的引物选择方法
引物近似多重PCR (PAMP)是最近引入的一种实验技术,用于检测大规模癌症基因组病变,例如从含有癌症和正常细胞混合物的异质样品中检测反转和缺失。本文给出了使检测失效概率最小的PAMP引物集合选择问题的整数线性规划公式。我们还表明,PAMP引物选择检测锚定缺失不能在2”的因子内近似,并给出了该问题的特殊情况下的2-近似算法。实验结果表明,我们的ILP公式可用于最优解决反转检测问题的中等大小实例,并且基于迭代求解问题的单侧版本的ILP公式的启发式方法为锚定删除检测提供了具有高度可扩展运行时的近最优解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Tuning Privacy-Utility Tradeoff in Genomic Studies Using Selective SNP Hiding. The Future of Bioinformatics CHEMICAL COMPOUND CLASSIFICATION WITH AUTOMATICALLY MINED STRUCTURE PATTERNS. Predicting Nucleolar Proteins Using Support-Vector Machines Proceedings of the 6th Asia-Pacific Bioinformatics Conference, APBC 2008, 14-17 January 2008, Kyoto, Japan
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1