Shirin Kordnoori, H. Mostafaei, Shaghayegh Kordnoori, M. Ostadrahimi
{"title":"Evaluating the CDMA System Using Hidden Markov and Semi Hidden Markov Models","authors":"Shirin Kordnoori, H. Mostafaei, Shaghayegh Kordnoori, M. Ostadrahimi","doi":"10.12962/J20882033.V31I3.7016","DOIUrl":null,"url":null,"abstract":"CDMA is an important and basic part of today’s communications technologies. This technology can be analyzed efficiently by reducing the time, computation burden, and cost by characterizing the physical layer with a Markov Model. Waveform level simulation is generally used for simulating different parts of a digital communication system. In this paper, we introduce two different mathematical methods to model digital communication channels. Hidden Markov and Semi Hidden Markov models’ applications have been investigated for evaluating the DS-CDMA link performance with different parameters. Hidden Markov Models have been a powerful mathematical tool that can be applied as models of discrete-time series in many fields successfully. A semi-hidden Markov model as a stochastic process is a modification of hidden Markov models with states that are no longer unobservable and less hidden. A principal characteristic of this mathematical model is statistical inertia, which admits the generation, and analysis of observation symbol contains frequent runs. The SHMMs cause a substantial reduction in the model parameter set. Therefore in most cases, these models are computationally more efficient models compared to HMMs. After 30 iterations for different Number of Interferers, all parameters have been estimated as the likelihood become constant by the Baum Welch algorithm. It has been demonstrated that by employing these two models for different Numbers of Interferers and Number of symbols, Error sequences can be generated, which are statistically the same as the sequences derived from the CDMA simulation. An excellent match confirms both models’ reliability to those of the underlying CDMA-based physical layer.","PeriodicalId":14549,"journal":{"name":"IPTEK: The Journal for Technology and Science","volume":"77 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IPTEK: The Journal for Technology and Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12962/J20882033.V31I3.7016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
CDMA is an important and basic part of today’s communications technologies. This technology can be analyzed efficiently by reducing the time, computation burden, and cost by characterizing the physical layer with a Markov Model. Waveform level simulation is generally used for simulating different parts of a digital communication system. In this paper, we introduce two different mathematical methods to model digital communication channels. Hidden Markov and Semi Hidden Markov models’ applications have been investigated for evaluating the DS-CDMA link performance with different parameters. Hidden Markov Models have been a powerful mathematical tool that can be applied as models of discrete-time series in many fields successfully. A semi-hidden Markov model as a stochastic process is a modification of hidden Markov models with states that are no longer unobservable and less hidden. A principal characteristic of this mathematical model is statistical inertia, which admits the generation, and analysis of observation symbol contains frequent runs. The SHMMs cause a substantial reduction in the model parameter set. Therefore in most cases, these models are computationally more efficient models compared to HMMs. After 30 iterations for different Number of Interferers, all parameters have been estimated as the likelihood become constant by the Baum Welch algorithm. It has been demonstrated that by employing these two models for different Numbers of Interferers and Number of symbols, Error sequences can be generated, which are statistically the same as the sequences derived from the CDMA simulation. An excellent match confirms both models’ reliability to those of the underlying CDMA-based physical layer.