{"title":"Collaborative Optimization of Car-flow Organization for Freight Trains Based on Adjacent Technical Stations","authors":"Yijing Yang, Xu Wu, Haonan Li","doi":"10.7307/PTT.V33I1.3601","DOIUrl":null,"url":null,"abstract":"This paper proposes a collaborative optimization model of car-flow organization for freight trains based on adjacent technical stations to minimize the average dwell time of train cars in a yard. To solve the car-flow organization problems, a priority-based hump sequence, which depends on the cars available in two adjacent technical stations, is adopted. Furthermore, a meta-heuristic algorithm based on the genetic algorithm and the taboo search algorithm is adopted to solve the model, and the introduction of the active scheduling method improves the efficiency of the algorithm. Finally, the model is applied to the car-flow organization problem of two adjacent technical stations, and the results are compared with those from a single technical station without collaboration. The results demonstrate that collaborative car-flow organization between technical stations significantly reduces the average dwell time at the stations, thereby improving the utilization rate of railroad equipment. In addition, the results indicate that the hybrid genetic algorithm can rapidly determine the train hump and marshalling schemes.","PeriodicalId":54546,"journal":{"name":"Promet-Traffic & Transportation","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2021-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Promet-Traffic & Transportation","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.7307/PTT.V33I1.3601","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"TRANSPORTATION SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This paper proposes a collaborative optimization model of car-flow organization for freight trains based on adjacent technical stations to minimize the average dwell time of train cars in a yard. To solve the car-flow organization problems, a priority-based hump sequence, which depends on the cars available in two adjacent technical stations, is adopted. Furthermore, a meta-heuristic algorithm based on the genetic algorithm and the taboo search algorithm is adopted to solve the model, and the introduction of the active scheduling method improves the efficiency of the algorithm. Finally, the model is applied to the car-flow organization problem of two adjacent technical stations, and the results are compared with those from a single technical station without collaboration. The results demonstrate that collaborative car-flow organization between technical stations significantly reduces the average dwell time at the stations, thereby improving the utilization rate of railroad equipment. In addition, the results indicate that the hybrid genetic algorithm can rapidly determine the train hump and marshalling schemes.
期刊介绍:
This scientific journal publishes scientific papers in the area of technical sciences, field of transport and traffic technology.
The basic guidelines of the journal, which support the mission - promotion of transport science, are: relevancy of published papers and reviewer competency, established identity in the print and publishing profile, as well as other formal and informal details. The journal organisation consists of the Editorial Board, Editors, Reviewer Selection Committee and the Scientific Advisory Committee.
The received papers are subject to peer review in accordance with the recommendations for international scientific journals.
The papers published in the journal are placed in sections which explain their focus in more detail. The sections are: transportation economy, information and communication technology, intelligent transport systems, human-transport interaction, intermodal transport, education in traffic and transport, traffic planning, traffic and environment (ecology), traffic on motorways, traffic in the cities, transport and sustainable development, traffic and space, traffic infrastructure, traffic policy, transport engineering, transport law, safety and security in traffic, transport logistics, transport technology, transport telematics, internal transport, traffic management, science in traffic and transport, traffic engineering, transport in emergency situations, swarm intelligence in transportation engineering.
The Journal also publishes information not subject to review, and classified under the following headings: book and other reviews, symposia, conferences and exhibitions, scientific cooperation, anniversaries, portraits, bibliographies, publisher information, news, etc.