Optoelectronic Chip Assembly Process of Optical MCM

M. Tokunari, Koji Masuda, Hsiang-Han Hsu, T. Hisada, S. Nakagawa, R. Langlois, Patrick Jacques, P. Fortier
{"title":"Optoelectronic Chip Assembly Process of Optical MCM","authors":"M. Tokunari, Koji Masuda, Hsiang-Han Hsu, T. Hisada, S. Nakagawa, R. Langlois, Patrick Jacques, P. Fortier","doi":"10.1109/ECTC.2017.204","DOIUrl":null,"url":null,"abstract":"Assembly process reliability for Optical Multi-Chip Modules (MCM) is studied and improved. In the optoelectronic (OE) chip assembly for the Optical MCM, the OE chip with Au stud bump is joined with Sn-Ag-Cu (SAC) soldered in a through-waveguide via on an organic substrate to obtain high optical coupling efficiency. Since solid-liquid diffusion of Au to molten SAC is rapid, and formation of brittle intermetallic compounds such as AuSn4 is observed by an energy-dispersive X-ray analysis, and as a result the temperature and the dwell time for the chip assembly process should minimized. Furthermore, if OE chips are underfilled, resin could infiltrate into the total internal reflection mirror cavity, and it will not reflect anymore. On the other hand, Au - SAC joints are not mechanically stable without underfill because of a large thermal stress from the coefficient of thermal expansion mismatch between the OE chip and the optical waveguide-integrated organic substrate. The issue is solved by using sidefill encapsulation instead of underfill. Appropriate material selection of a high viscosity and high thixotropic index prevented infiltration under the chip. The effect of the sidefill process is verified by simulation and experimental results. The chip assembly with sidefill passes more than 1500 deep thermal cycles from -55 °C to 125 °C.","PeriodicalId":6557,"journal":{"name":"2017 IEEE 67th Electronic Components and Technology Conference (ECTC)","volume":"95 1","pages":"545-550"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 67th Electronic Components and Technology Conference (ECTC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECTC.2017.204","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Assembly process reliability for Optical Multi-Chip Modules (MCM) is studied and improved. In the optoelectronic (OE) chip assembly for the Optical MCM, the OE chip with Au stud bump is joined with Sn-Ag-Cu (SAC) soldered in a through-waveguide via on an organic substrate to obtain high optical coupling efficiency. Since solid-liquid diffusion of Au to molten SAC is rapid, and formation of brittle intermetallic compounds such as AuSn4 is observed by an energy-dispersive X-ray analysis, and as a result the temperature and the dwell time for the chip assembly process should minimized. Furthermore, if OE chips are underfilled, resin could infiltrate into the total internal reflection mirror cavity, and it will not reflect anymore. On the other hand, Au - SAC joints are not mechanically stable without underfill because of a large thermal stress from the coefficient of thermal expansion mismatch between the OE chip and the optical waveguide-integrated organic substrate. The issue is solved by using sidefill encapsulation instead of underfill. Appropriate material selection of a high viscosity and high thixotropic index prevented infiltration under the chip. The effect of the sidefill process is verified by simulation and experimental results. The chip assembly with sidefill passes more than 1500 deep thermal cycles from -55 °C to 125 °C.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
光学MCM的光电芯片组装工艺
对光多芯片模块(MCM)的装配过程可靠性进行了研究和改进。在光学MCM的光电(OE)芯片组件中,将具有Au螺柱凸点的OE芯片与焊接在有机衬底上的Sn-Ag-Cu (SAC)连接在通波导中,以获得较高的光耦合效率。由于Au的固液扩散到熔融SAC是快速的,并且通过能量色散x射线分析可以观察到脆性金属间化合物(如AuSn4)的形成,因此芯片组装过程的温度和停留时间应该最小化。此外,如果OE芯片填充不足,树脂会渗透到全内反射镜腔中,不再反射。另一方面,由于OE芯片与光波导集成有机衬底之间的热膨胀系数不匹配造成了较大的热应力,因此在没有下填料的情况下,Au - SAC接头的机械稳定性不佳。这个问题可以通过使用侧填封装而不是下填来解决。适当选择高粘度和高触变指数的材料,防止了切屑下的渗透。仿真和实验结果验证了侧渗工艺的效果。带有侧填料的芯片组件在-55°C至125°C范围内通过1500多个深度热循环。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Peridynamic Solution of Wetness Equation with Time Dependent Saturated Concentration in ANSYS Framework Axially Tapered Circular Core Polymer Optical Waveguides Enabling Highly Efficient Light Coupling Low Loss Channel-Shuffling Polymer Waveguides: Design and Fabrication Development of Packaging Technology for High Temperature Resistant SiC Module of Automobile Application 3D Packaging of Embedded Opto-Electronic Die and CMOS IC Based on Wet Etched Silicon Interposer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1