{"title":"Bridge Displacement Measurement Using the GAN-Network-Based Spot Removal Algorithm and the SR-Based Coarse-to-Fine Target Location Method","authors":"Shanshan Yu, Jian Zhang","doi":"10.1155/2023/6035288","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Image-based bridge displacement measurement still suffers from certain limitations in outdoor implementation. Each of these limitations was addressed in this study. (1) The laser spot is difficult to identify visually during the object distance (OD: mm) measurement using a laser rangefinder, which makes the scale factor (SF: mm/pixel) calibration tricky. To overcome this issue, a stereovision-based full-field OD measurement method using only one camera was suggested. (2) Sunlight reflected by the water surface during the measurement causes light spot interference on the captured images, which is not conducive to target tracking. A network for light spot removal based on a generative adversarial network (GAN) is designed. To obtain a better image restoration effect, the edge prior was novelly designed as the input of a shadow mask-based semantic-aware network (S<sup>2</sup>Net). (3) A coarse-to-fine matching strategy combined with image sparse representation (SR) was developed to balance the subpixel location precision and efficiency. The effectiveness of the above innovations was verified through algorithm evaluation. Finally, the integrated method was applied to the vibration response monitoring of a concrete bridge impacted by the traffic load. The image-based measurement results show good agreement with those of the long-gauge fiber Bragg grating sensors and lower noise than that of the method before improvement.</p>\n </div>","PeriodicalId":49471,"journal":{"name":"Structural Control & Health Monitoring","volume":"2023 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2023-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2023/6035288","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Control & Health Monitoring","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2023/6035288","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Image-based bridge displacement measurement still suffers from certain limitations in outdoor implementation. Each of these limitations was addressed in this study. (1) The laser spot is difficult to identify visually during the object distance (OD: mm) measurement using a laser rangefinder, which makes the scale factor (SF: mm/pixel) calibration tricky. To overcome this issue, a stereovision-based full-field OD measurement method using only one camera was suggested. (2) Sunlight reflected by the water surface during the measurement causes light spot interference on the captured images, which is not conducive to target tracking. A network for light spot removal based on a generative adversarial network (GAN) is designed. To obtain a better image restoration effect, the edge prior was novelly designed as the input of a shadow mask-based semantic-aware network (S2Net). (3) A coarse-to-fine matching strategy combined with image sparse representation (SR) was developed to balance the subpixel location precision and efficiency. The effectiveness of the above innovations was verified through algorithm evaluation. Finally, the integrated method was applied to the vibration response monitoring of a concrete bridge impacted by the traffic load. The image-based measurement results show good agreement with those of the long-gauge fiber Bragg grating sensors and lower noise than that of the method before improvement.
期刊介绍:
The Journal Structural Control and Health Monitoring encompasses all theoretical and technological aspects of structural control, structural health monitoring theory and smart materials and structures. The journal focuses on aerospace, civil, infrastructure and mechanical engineering applications.
Original contributions based on analytical, computational and experimental methods are solicited in three main areas: monitoring, control, and smart materials and structures, covering subjects such as system identification, health monitoring, health diagnostics, multi-functional materials, signal processing, sensor technology, passive, active and semi active control schemes and implementations, shape memory alloys, piezoelectrics and mechatronics.
Also of interest are actuator design, dynamic systems, dynamic stability, artificial intelligence tools, data acquisition, wireless communications, measurements, MEMS/NEMS sensors for local damage detection, optical fibre sensors for health monitoring, remote control of monitoring systems, sensor-logger combinations for mobile applications, corrosion sensors, scour indicators and experimental techniques.