Feasibility study on applying thermoelectric SiC ceramics for supersonic aerodynamic heat recovery

X. Han, Haifeng Cheng, Jun Wang
{"title":"Feasibility study on applying thermoelectric SiC ceramics for supersonic aerodynamic heat recovery","authors":"X. Han, Haifeng Cheng, Jun Wang","doi":"10.1109/ICMREE.2013.6893716","DOIUrl":null,"url":null,"abstract":"SiC ceramics are widely serving as ceramic composites matrix materials of high-velocity vehicles structures against extremely heating and oxidation for their sustainability at high temperature, and are also high temperature thermoelectric materials, which can transfer heat to electricity by temperature difference. Both of these advantages brought out an idea of generating electricity from aerodynamic heat by thermoelectric SiC structures on supersonic vehicles. A simple nose-tip thermoelectric module is set up, in this work, to predict the thermoelectric performance of SiC ceramics in a supersonic air flow environment (Mach number 3). The flow field parameters, temperature difference and temperature distributions of the module have been simulated by computational fluid dynamics methods. The thermoelectric performance and effect of Thomson heat were discussed. The maximum power output and energy efficiency reaches 0.0027 W and 0.0036 %, respectively, at 230 K temperature difference and a current of 0.122 A. The Thomson heat increases directly with the output current, and at a current above 0.15 A, over 50 % of the generated power has been turned back to thermal heat, resulting in the effective output power as well as energy efficiency decrease rapidly. The thermoelectric efficiency would be increased on higher-speed vehicles by enlarged temperature difference.","PeriodicalId":6427,"journal":{"name":"2013 International Conference on Materials for Renewable Energy and Environment","volume":"70 1","pages":"485-489"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Materials for Renewable Energy and Environment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMREE.2013.6893716","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

SiC ceramics are widely serving as ceramic composites matrix materials of high-velocity vehicles structures against extremely heating and oxidation for their sustainability at high temperature, and are also high temperature thermoelectric materials, which can transfer heat to electricity by temperature difference. Both of these advantages brought out an idea of generating electricity from aerodynamic heat by thermoelectric SiC structures on supersonic vehicles. A simple nose-tip thermoelectric module is set up, in this work, to predict the thermoelectric performance of SiC ceramics in a supersonic air flow environment (Mach number 3). The flow field parameters, temperature difference and temperature distributions of the module have been simulated by computational fluid dynamics methods. The thermoelectric performance and effect of Thomson heat were discussed. The maximum power output and energy efficiency reaches 0.0027 W and 0.0036 %, respectively, at 230 K temperature difference and a current of 0.122 A. The Thomson heat increases directly with the output current, and at a current above 0.15 A, over 50 % of the generated power has been turned back to thermal heat, resulting in the effective output power as well as energy efficiency decrease rapidly. The thermoelectric efficiency would be increased on higher-speed vehicles by enlarged temperature difference.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
热电SiC陶瓷应用于超音速气动热回收的可行性研究
碳化硅陶瓷因其在高温下的可持续性被广泛用作高速车辆结构的陶瓷复合材料基体材料,同时也是一种利用温差将热转化为电的高温热电材料。这两个优点引出了利用超音速飞行器上的热电碳化硅结构利用空气动力热发电的想法。本文建立了一个简单的鼻尖热电模块,用于预测SiC陶瓷在超音速气流环境(马赫数为3)下的热电性能,并采用计算流体动力学方法对该模块的流场参数、温差和温度分布进行了模拟。讨论了汤姆逊热的热电性能和效应。当温度差为230 K,电流为0.122 a时,最大输出功率为0.0027 W,最大能效为0.0036%。汤姆逊热直接随着输出电流的增大而增大,在0.15 a以上的电流下,超过50%的发电功率已转化为热能,导致有效输出功率和能效迅速下降。在高速行驶的车辆上,增大温差可以提高热电效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analysis about the distributed energy supply system based on LCA Swida wilsoniana oil based biodiesel catalyzed by 1-(4-sulfonic acid) butyl-pyridinium hydrosulfate Preparation of the WO3/TiO2 using microwave-heating in ionic liquid and its application in electrocatalysis Wind power prediction with LSSVM model based on data stratification pretreatment A fast model to identify multiple indoor contaminant sources with known releasing time by considering real sensor characteristics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1