{"title":"Energy Efficiency and Resource Allocation Optimization with MIMO-NOMA and Backhaul Beam-Forming in User Centric Ultra Dense Networks","authors":"M. Ravi, T. Sheikh, Y. Bulo","doi":"10.2174/2210327913666221021110816","DOIUrl":null,"url":null,"abstract":"\n\nNon-orthogonal multiple access (NOMA) is viewed as the key multiple access technology for 5G and beyond networks, attracting the attention of academics and Industries. NOMA and the multiple input multiple output (MIMO-NOMA) technology can improve a system’s throughput, latency, and energy efficiency (EE) in future-generation communication networks.\n\n\n\nThe objective of this paper is to achieve maximum EE by applying the Max-min Power Control Algorithm (MMPCA) through sub-channel optimization, resource allocation (RA) optimization, access point selection (APS), and user association. The EE results obtained with and without using MMPCA are compared to the RA optimization from a conventional water-filling algorithm (WFA).\n\n\n\nThis paper formulates a framework for user-centric (UC) joint resource allocation, such as backhaul connection via beam-forming and Access point AP to user connection via MIMO-NOMA. The user without interference is decoded using the NOMA principle. The MMPCA was also used to optimize cooperative power allocation, sub-channel allocation, and efficient user association. The RA for EE is framed as a mixed non-convex and non-linear function using successive convex approximation and sum ratio decoupling convert in convex and linear. A bisection method was used to achieve optimal RA, user association, and sub-channel assignment.\n\n\n\nThe simulation shows energy efficiency (EE) improvement. Similarly, it is observed that MMPCA outperforms the WFA.\n","PeriodicalId":37686,"journal":{"name":"International Journal of Sensors, Wireless Communications and Control","volume":"98 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Sensors, Wireless Communications and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/2210327913666221021110816","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
Abstract
Non-orthogonal multiple access (NOMA) is viewed as the key multiple access technology for 5G and beyond networks, attracting the attention of academics and Industries. NOMA and the multiple input multiple output (MIMO-NOMA) technology can improve a system’s throughput, latency, and energy efficiency (EE) in future-generation communication networks.
The objective of this paper is to achieve maximum EE by applying the Max-min Power Control Algorithm (MMPCA) through sub-channel optimization, resource allocation (RA) optimization, access point selection (APS), and user association. The EE results obtained with and without using MMPCA are compared to the RA optimization from a conventional water-filling algorithm (WFA).
This paper formulates a framework for user-centric (UC) joint resource allocation, such as backhaul connection via beam-forming and Access point AP to user connection via MIMO-NOMA. The user without interference is decoded using the NOMA principle. The MMPCA was also used to optimize cooperative power allocation, sub-channel allocation, and efficient user association. The RA for EE is framed as a mixed non-convex and non-linear function using successive convex approximation and sum ratio decoupling convert in convex and linear. A bisection method was used to achieve optimal RA, user association, and sub-channel assignment.
The simulation shows energy efficiency (EE) improvement. Similarly, it is observed that MMPCA outperforms the WFA.
期刊介绍:
International Journal of Sensors, Wireless Communications and Control publishes timely research articles, full-length/ mini reviews and communications on these three strongly related areas, with emphasis on networked control systems whose sensors are interconnected via wireless communication networks. The emergence of high speed wireless network technologies allows a cluster of devices to be linked together economically to form a distributed system. Wireless communication is playing an increasingly important role in such distributed systems. Transmitting sensor measurements and control commands over wireless links allows rapid deployment, flexible installation, fully mobile operation and prevents the cable wear and tear problem in industrial automation, healthcare and environmental assessment. Wireless networked systems has raised and continues to raise fundamental challenges in the fields of science, engineering and industrial applications, hence, more new modelling techniques, problem formulations and solutions are required.