A hybrid multiple sensor fault detection, diagnosis and reconstruction algorithm for chiller plants

IF 2.2 4区 工程技术 Q2 CONSTRUCTION & BUILDING TECHNOLOGY Journal of Building Performance Simulation Pub Date : 2023-03-22 DOI:10.1080/19401493.2023.2189303
K. Fong, C. K. Lee, M. Leung, Y. Sun, Guangya Zhu, Hyo Baek, X. J. Luo, Tim Ka, Kui Lo, Hetty Sin, Ying Leung
{"title":"A hybrid multiple sensor fault detection, diagnosis and reconstruction algorithm for chiller plants","authors":"K. Fong, C. K. Lee, M. Leung, Y. Sun, Guangya Zhu, Hyo Baek, X. J. Luo, Tim Ka, Kui Lo, Hetty Sin, Ying Leung","doi":"10.1080/19401493.2023.2189303","DOIUrl":null,"url":null,"abstract":"In a chiller plant, primary or critical sensors are used to control the system operation while secondary sensors are installed to monitor the performance/health of individual equipment. Current sensor fault detection and diagnosis (SFDD) approaches are not applicable to secondary sensors which usually are not involved in the system control. Consequently, a hybrid multiple sensor fault detection, diagnosis and reconstruction (HMSFDDR) algorithm for chiller plants was developed. Machine learning and pattern recognition were used to predict the primary sensor faults through the comparison of the weekly performance curves. With the primary sensor signals reconstructed, the secondary sensor faults were estimated based on mass and energy balance. By applying the algorithm with various logged plant data and comparison with site checking results, a maximum of 75% effectiveness could be achieved. The merits of the present approach were further justified through off-site sensor testing which reinforced the usefulness of proposed HMSFDDR algorithm.","PeriodicalId":49168,"journal":{"name":"Journal of Building Performance Simulation","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2023-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Building Performance Simulation","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/19401493.2023.2189303","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 2

Abstract

In a chiller plant, primary or critical sensors are used to control the system operation while secondary sensors are installed to monitor the performance/health of individual equipment. Current sensor fault detection and diagnosis (SFDD) approaches are not applicable to secondary sensors which usually are not involved in the system control. Consequently, a hybrid multiple sensor fault detection, diagnosis and reconstruction (HMSFDDR) algorithm for chiller plants was developed. Machine learning and pattern recognition were used to predict the primary sensor faults through the comparison of the weekly performance curves. With the primary sensor signals reconstructed, the secondary sensor faults were estimated based on mass and energy balance. By applying the algorithm with various logged plant data and comparison with site checking results, a maximum of 75% effectiveness could be achieved. The merits of the present approach were further justified through off-site sensor testing which reinforced the usefulness of proposed HMSFDDR algorithm.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种混合多传感器冷水机组故障检测、诊断与重建算法
在冷水机组中,主要或关键传感器用于控制系统运行,而次要传感器用于监测单个设备的性能/健康状况。当前传感器故障检测与诊断方法不适用于通常不参与系统控制的二次传感器。在此基础上,提出了一种多传感器混合故障检测、诊断与重建算法。通过每周性能曲线的比较,采用机器学习和模式识别技术预测传感器的主要故障。在对主传感器信号进行重构的基础上,基于质量和能量平衡对副传感器故障进行估计。通过将该算法应用于各种植物记录数据,并与现场检查结果进行比较,最高可达到75%的有效性。通过非现场传感器测试进一步证明了该方法的优点,增强了HMSFDDR算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Building Performance Simulation
Journal of Building Performance Simulation CONSTRUCTION & BUILDING TECHNOLOGY-
CiteScore
5.50
自引率
12.00%
发文量
55
审稿时长
12 months
期刊介绍: The Journal of Building Performance Simulation (JBPS) aims to make a substantial and lasting contribution to the international building community by supporting our authors and the high-quality, original research they submit. The journal also offers a forum for original review papers and researched case studies We welcome building performance simulation contributions that explore the following topics related to buildings and communities: -Theoretical aspects related to modelling and simulating the physical processes (thermal, air flow, moisture, lighting, acoustics). -Theoretical aspects related to modelling and simulating conventional and innovative energy conversion, storage, distribution, and control systems. -Theoretical aspects related to occupants, weather data, and other boundary conditions. -Methods and algorithms for optimizing the performance of buildings and communities and the systems which service them, including interaction with the electrical grid. -Uncertainty, sensitivity analysis, and calibration. -Methods and algorithms for validating models and for verifying solution methods and tools. -Development and validation of controls-oriented models that are appropriate for model predictive control and/or automated fault detection and diagnostics. -Techniques for educating and training tool users. -Software development techniques and interoperability issues with direct applicability to building performance simulation. -Case studies involving the application of building performance simulation for any stage of the design, construction, commissioning, operation, or management of buildings and the systems which service them are welcomed if they include validation or aspects that make a novel contribution to the knowledge base.
期刊最新文献
IMPACT pathways – a bottom-up modelling framework to guide sustainable growth and avoid carbon lock-in of cities Evaluation of a building envelope Heat Transfer Coefficient in use: Bayesian approach to improve the inclusion of solar gains Effect of temperature-dependent and hysteretic sorption in computational mould risk analyses of wood fibreboard sheathing A neural network-based surrogate model to predict building features from heating and cooling load signatures Students’ behaviour analysis based on correlating thermal comfort and spatial simulations; case study of a schoolyard in Shiraz City
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1