K. Fong, C. K. Lee, M. Leung, Y. Sun, Guangya Zhu, Hyo Baek, X. J. Luo, Tim Ka, Kui Lo, Hetty Sin, Ying Leung
{"title":"A hybrid multiple sensor fault detection, diagnosis and reconstruction algorithm for chiller plants","authors":"K. Fong, C. K. Lee, M. Leung, Y. Sun, Guangya Zhu, Hyo Baek, X. J. Luo, Tim Ka, Kui Lo, Hetty Sin, Ying Leung","doi":"10.1080/19401493.2023.2189303","DOIUrl":null,"url":null,"abstract":"In a chiller plant, primary or critical sensors are used to control the system operation while secondary sensors are installed to monitor the performance/health of individual equipment. Current sensor fault detection and diagnosis (SFDD) approaches are not applicable to secondary sensors which usually are not involved in the system control. Consequently, a hybrid multiple sensor fault detection, diagnosis and reconstruction (HMSFDDR) algorithm for chiller plants was developed. Machine learning and pattern recognition were used to predict the primary sensor faults through the comparison of the weekly performance curves. With the primary sensor signals reconstructed, the secondary sensor faults were estimated based on mass and energy balance. By applying the algorithm with various logged plant data and comparison with site checking results, a maximum of 75% effectiveness could be achieved. The merits of the present approach were further justified through off-site sensor testing which reinforced the usefulness of proposed HMSFDDR algorithm.","PeriodicalId":49168,"journal":{"name":"Journal of Building Performance Simulation","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2023-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Building Performance Simulation","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/19401493.2023.2189303","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 2
Abstract
In a chiller plant, primary or critical sensors are used to control the system operation while secondary sensors are installed to monitor the performance/health of individual equipment. Current sensor fault detection and diagnosis (SFDD) approaches are not applicable to secondary sensors which usually are not involved in the system control. Consequently, a hybrid multiple sensor fault detection, diagnosis and reconstruction (HMSFDDR) algorithm for chiller plants was developed. Machine learning and pattern recognition were used to predict the primary sensor faults through the comparison of the weekly performance curves. With the primary sensor signals reconstructed, the secondary sensor faults were estimated based on mass and energy balance. By applying the algorithm with various logged plant data and comparison with site checking results, a maximum of 75% effectiveness could be achieved. The merits of the present approach were further justified through off-site sensor testing which reinforced the usefulness of proposed HMSFDDR algorithm.
期刊介绍:
The Journal of Building Performance Simulation (JBPS) aims to make a substantial and lasting contribution to the international building community by supporting our authors and the high-quality, original research they submit. The journal also offers a forum for original review papers and researched case studies
We welcome building performance simulation contributions that explore the following topics related to buildings and communities:
-Theoretical aspects related to modelling and simulating the physical processes (thermal, air flow, moisture, lighting, acoustics).
-Theoretical aspects related to modelling and simulating conventional and innovative energy conversion, storage, distribution, and control systems.
-Theoretical aspects related to occupants, weather data, and other boundary conditions.
-Methods and algorithms for optimizing the performance of buildings and communities and the systems which service them, including interaction with the electrical grid.
-Uncertainty, sensitivity analysis, and calibration.
-Methods and algorithms for validating models and for verifying solution methods and tools.
-Development and validation of controls-oriented models that are appropriate for model predictive control and/or automated fault detection and diagnostics.
-Techniques for educating and training tool users.
-Software development techniques and interoperability issues with direct applicability to building performance simulation.
-Case studies involving the application of building performance simulation for any stage of the design, construction, commissioning, operation, or management of buildings and the systems which service them are welcomed if they include validation or aspects that make a novel contribution to the knowledge base.