Hierarchical simultaneous upscaling of porosity and permeability features using the bandwidth of kernel function and wavelet transformation in two dimensions: Application to the SPE-10 model
M. Azad, A. Kamkar-Rouhani, B. Tokhmechi, M. Arashi
{"title":"Hierarchical simultaneous upscaling of porosity and permeability features using the bandwidth of kernel function and wavelet transformation in two dimensions: Application to the SPE-10 model","authors":"M. Azad, A. Kamkar-Rouhani, B. Tokhmechi, M. Arashi","doi":"10.2516/OGST/2021006","DOIUrl":null,"url":null,"abstract":"In this paper, two methods of kernel bandwidth and wavelet transform are used for simultaneous upscaling of two features of hydrocarbon reservoir. In the bandwidth method, the criterion for upscaling is the cell variability, and by calculating the optimal bandwidth and determining the distance matrix, the upscaling process is performed in a completely non-uniform and unregularly manner. In areas with extreme variability, the bandwidth is considered small enough to maintain the fine scale characteristics of model. Conversely in homogenous areas, with the choice of large bandwidth, the maximum rate of upscaling will occur. The bandwidth upscaling algorithm is an iterative and hierarchical algorithm. The bandwidth method, unlike conventional scale-up methods, focuses on how to upgrid cells and, by determining the optimal averaging window, we will have the least loss information for the fine scale model. Upscaling is a pre-processing to building a simulator model with lower cell number, and thus, reducing volume and computational cost, while maintaining and retaining the basic information of the fine model. Due to the various variability of the reservoir features, the attribute upscaling pattern differs, and in order to show the variability of two features in the upscaling model simultaneously, it is suggested in this paper to upscale two features simultaneously. For simultaneous upscaling, we applied two different approaches; minimum and maximum bandwidth. Moreover, wavelet transformation is applied to upscaling the model. Then, as a result, the variance of the scale-up models based on wavelet is about one-third of the variance of the bandwidth method. Simulation results show that the bandwidth method is a good approach for upscaling the heterogeneous reservoirs.","PeriodicalId":19424,"journal":{"name":"Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles","volume":"101 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2516/OGST/2021006","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 2
Abstract
In this paper, two methods of kernel bandwidth and wavelet transform are used for simultaneous upscaling of two features of hydrocarbon reservoir. In the bandwidth method, the criterion for upscaling is the cell variability, and by calculating the optimal bandwidth and determining the distance matrix, the upscaling process is performed in a completely non-uniform and unregularly manner. In areas with extreme variability, the bandwidth is considered small enough to maintain the fine scale characteristics of model. Conversely in homogenous areas, with the choice of large bandwidth, the maximum rate of upscaling will occur. The bandwidth upscaling algorithm is an iterative and hierarchical algorithm. The bandwidth method, unlike conventional scale-up methods, focuses on how to upgrid cells and, by determining the optimal averaging window, we will have the least loss information for the fine scale model. Upscaling is a pre-processing to building a simulator model with lower cell number, and thus, reducing volume and computational cost, while maintaining and retaining the basic information of the fine model. Due to the various variability of the reservoir features, the attribute upscaling pattern differs, and in order to show the variability of two features in the upscaling model simultaneously, it is suggested in this paper to upscale two features simultaneously. For simultaneous upscaling, we applied two different approaches; minimum and maximum bandwidth. Moreover, wavelet transformation is applied to upscaling the model. Then, as a result, the variance of the scale-up models based on wavelet is about one-third of the variance of the bandwidth method. Simulation results show that the bandwidth method is a good approach for upscaling the heterogeneous reservoirs.
期刊介绍:
OGST - Revue d''IFP Energies nouvelles is a journal concerning all disciplines and fields relevant to exploration, production, refining, petrochemicals, and the use and economics of petroleum, natural gas, and other sources of energy, in particular alternative energies with in view of the energy transition.
OGST - Revue d''IFP Energies nouvelles has an Editorial Committee made up of 15 leading European personalities from universities and from industry, and is indexed in the major international bibliographical databases.
The journal publishes review articles, in English or in French, and topical issues, giving an overview of the contributions of complementary disciplines in tackling contemporary problems. Each article includes a detailed abstract in English. However, a French translation of the summaries can be provided to readers on request. Summaries of all papers published in the revue from 1974 can be consulted on this site. Over 1 000 papers that have been published since 1997 are freely available in full text form (as pdf files). Currently, over 10 000 downloads are recorded per month.
Researchers in the above fields are invited to submit an article. Rigorous selection of the articles is ensured by a review process that involves IFPEN and external experts as well as the members of the editorial committee. It is preferable to submit the articles in English, either as independent papers or in association with one of the upcoming topical issues.