Teaching a Robot to Grasp Real Fish by Imitation Learning from a Human Supervisor in Virtual Reality

Jonatan S. Dyrstad, Elling Ruud Øye, Annette Stahl, J. R. Mathiassen
{"title":"Teaching a Robot to Grasp Real Fish by Imitation Learning from a Human Supervisor in Virtual Reality","authors":"Jonatan S. Dyrstad, Elling Ruud Øye, Annette Stahl, J. R. Mathiassen","doi":"10.1109/IROS.2018.8593954","DOIUrl":null,"url":null,"abstract":"We teach a real robot to grasp real fish, by training a virtual robot exclusively in virtual reality. Our approach implements robot imitation learning from a human supervisor in virtual reality. A deep 3D convolutional neural network computes grasps from a 3D occupancy grid obtained from depth imaging at multiple viewpoints. In virtual reality, a human supervisor can easily and intuitively demonstrate examples of how to grasp an object, such as a fish. From a few dozen of these demonstrations, we use domain randomization to generate a large synthetic training data set consisting of 100 000 example grasps of fish. Using this data set for training purposes, the network is able to guide a real robot and gripper to grasp real fish with good success rates. The newly proposed domain randomization approach constitutes the first step in how to efficiently perform robot imitation learning from a human supervisor in virtual reality in a way that transfers well to the real world.","PeriodicalId":6640,"journal":{"name":"2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)","volume":"75 1","pages":"7185-7192"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IROS.2018.8593954","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

Abstract

We teach a real robot to grasp real fish, by training a virtual robot exclusively in virtual reality. Our approach implements robot imitation learning from a human supervisor in virtual reality. A deep 3D convolutional neural network computes grasps from a 3D occupancy grid obtained from depth imaging at multiple viewpoints. In virtual reality, a human supervisor can easily and intuitively demonstrate examples of how to grasp an object, such as a fish. From a few dozen of these demonstrations, we use domain randomization to generate a large synthetic training data set consisting of 100 000 example grasps of fish. Using this data set for training purposes, the network is able to guide a real robot and gripper to grasp real fish with good success rates. The newly proposed domain randomization approach constitutes the first step in how to efficiently perform robot imitation learning from a human supervisor in virtual reality in a way that transfers well to the real world.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在虚拟现实中,通过向人类监督者模仿学习来教机器人抓取真鱼
我们通过在虚拟现实中训练一个虚拟机器人来教一个真正的机器人抓住真正的鱼。我们的方法在虚拟现实中实现了机器人模仿学习。深度3D卷积神经网络从多个视点的深度成像获得的3D占用网格中计算抓取。在虚拟现实中,人类监督者可以轻松直观地演示如何抓住物体,比如一条鱼。从几十个这样的演示中,我们使用域随机化来生成一个大型的合成训练数据集,该数据集由100,000个抓鱼的例子组成。将此数据集用于训练目的,该网络能够引导真正的机器人和抓取器以良好的成功率抓取真正的鱼。新提出的领域随机化方法是如何在虚拟现实中有效地执行机器人模仿学习的第一步,并且可以很好地转移到现实世界中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On-Chip Virtual Vortex Gear and Its Application Classification of Hanging Garments Using Learned Features Extracted from 3D Point Clouds Deep Sequential Models for Sampling-Based Planning An Adjustable Force Sensitive Sensor with an Electromagnet for a Soft, Distributed, Digital 3-axis Skin Sensor Sliding-Layer Laminates: A Robotic Material Enabling Robust and Adaptable Undulatory Locomotion
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1