A MaxEnt learner for super-additive counting cumulativity

IF 0.9 2区 文学 0 LANGUAGE & LINGUISTICS Glossa-A Journal of General Linguistics Pub Date : 2022-06-20 DOI:10.16995/glossa.5856
Seoyoung Kim
{"title":"A MaxEnt learner for super-additive counting cumulativity","authors":"Seoyoung Kim","doi":"10.16995/glossa.5856","DOIUrl":null,"url":null,"abstract":"Whereas most previous studies on (super-)gang effects examined cases where two weaker constraints jointly beat another stronger constraint (Albright 2012; Shih 2017; Breiss and Albright 2020), this paper addresses gang effects that arise from multiple violations of a single constraint, which Jäger and Rosenbach (2006) referred to as counting cumulativity. The super-additive version of counting cumulativity is the focus of this paper; cases where multiple violations of a weaker constraint not only overpower a single violation of a stronger constraint, but also surpass the mere multiplication of the severity of its single violation. I report two natural language examples where a morphophonlogical alternation in a compound is suppressed by the existence of marked segments in a super-additive manner: laryngeally marked consonants in Korean compound tensification and nasals in Japanese Rendaku. Using these two test cases, this paper argues that these types of super-additivity cannot be entirely captured by the traditional MaxEnt grammar; instead, a modified MaxEnt model is proposed, in which the degree of penalty is scaled up by the number of violations, through a power function. This paper also provides a computational implementation of the proposed MaxEnt model which learns necessary parameters given quantitative language data. A series of learning simulations on Korean and Japanese show that the MaxEnt learner is able to detect super-additive constraints and find the appropriate exponent values for those constraints, correctly capturing the probability distributions in the input data.","PeriodicalId":46319,"journal":{"name":"Glossa-A Journal of General Linguistics","volume":"56 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2022-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Glossa-A Journal of General Linguistics","FirstCategoryId":"98","ListUrlMain":"https://doi.org/10.16995/glossa.5856","RegionNum":2,"RegionCategory":"文学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"LANGUAGE & LINGUISTICS","Score":null,"Total":0}
引用次数: 2

Abstract

Whereas most previous studies on (super-)gang effects examined cases where two weaker constraints jointly beat another stronger constraint (Albright 2012; Shih 2017; Breiss and Albright 2020), this paper addresses gang effects that arise from multiple violations of a single constraint, which Jäger and Rosenbach (2006) referred to as counting cumulativity. The super-additive version of counting cumulativity is the focus of this paper; cases where multiple violations of a weaker constraint not only overpower a single violation of a stronger constraint, but also surpass the mere multiplication of the severity of its single violation. I report two natural language examples where a morphophonlogical alternation in a compound is suppressed by the existence of marked segments in a super-additive manner: laryngeally marked consonants in Korean compound tensification and nasals in Japanese Rendaku. Using these two test cases, this paper argues that these types of super-additivity cannot be entirely captured by the traditional MaxEnt grammar; instead, a modified MaxEnt model is proposed, in which the degree of penalty is scaled up by the number of violations, through a power function. This paper also provides a computational implementation of the proposed MaxEnt model which learns necessary parameters given quantitative language data. A series of learning simulations on Korean and Japanese show that the MaxEnt learner is able to detect super-additive constraints and find the appropriate exponent values for those constraints, correctly capturing the probability distributions in the input data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
超加性计数累积的MaxEnt学习器
然而,之前大多数关于(超级)群体效应的研究都是在两个较弱的约束共同击败另一个较强的约束的情况下进行的(Albright 2012;施2017;Breiss和Albright 2020),本文解决了因多次违反单一约束而产生的帮派效应,Jäger和Rosenbach(2006)将其称为计数累积性。计数累积性的超加性是本文研究的重点;在这种情况下,多次违反较弱的约束不仅压倒了对较强约束的一次违反,而且还超过了其单一违反的严重程度的倍数。我报告了两个自然语言的例子,在这些例子中,一个复合词中的词音变化被以超加性方式存在的标记片段所抑制:韩语复合词中的喉音标记辅音和日语Rendaku中的鼻音。使用这两个测试用例,本文认为这些类型的超可加性不能被传统的MaxEnt语法完全捕获;本文提出了一种改进的MaxEnt模型,该模型通过幂函数将违例次数按比例放大处罚程度。本文还提供了MaxEnt模型的计算实现,该模型可以在给定定量语言数据的情况下学习必要的参数。在韩语和日语上的一系列学习模拟表明,MaxEnt学习器能够检测到超加性约束,并为这些约束找到合适的指数值,正确捕获输入数据中的概率分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.10
自引率
10.00%
发文量
87
审稿时长
62 weeks
期刊最新文献
Title Pending 10160 Title Pending 8932 Title Pending 8653 Title Pending 10229 Title Pending 9904
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1