Real-Time Human Gaze Estimation

T. Rowntree, C. Pontecorvo, I. Reid
{"title":"Real-Time Human Gaze Estimation","authors":"T. Rowntree, C. Pontecorvo, I. Reid","doi":"10.1109/DICTA47822.2019.8945919","DOIUrl":null,"url":null,"abstract":"This paper describes a system for estimating the course gaze or 1D head pose of multiple people in a video stream from a moving camera in an indoor scene. The system runs at 30 Hz and can detect human heads with a F-Score of 87.2% and predict their gaze with an average error 20.9° including when they are facing directly away from the camera. The system uses two Convolutional Neural Networks (CNNs) for head detection and gaze estimation respectively and uses common tracking and filtering techniques for smoothing predictions over time. This paper is application-focused and so describes the individual components of the system as well as the techniques used for collecting data and training the CNNs.","PeriodicalId":6696,"journal":{"name":"2019 Digital Image Computing: Techniques and Applications (DICTA)","volume":"22 1","pages":"1-7"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Digital Image Computing: Techniques and Applications (DICTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DICTA47822.2019.8945919","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper describes a system for estimating the course gaze or 1D head pose of multiple people in a video stream from a moving camera in an indoor scene. The system runs at 30 Hz and can detect human heads with a F-Score of 87.2% and predict their gaze with an average error 20.9° including when they are facing directly away from the camera. The system uses two Convolutional Neural Networks (CNNs) for head detection and gaze estimation respectively and uses common tracking and filtering techniques for smoothing predictions over time. This paper is application-focused and so describes the individual components of the system as well as the techniques used for collecting data and training the CNNs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
实时人眼注视估计
本文描述了一种用于估计室内场景中移动摄像机视频流中多人的航向凝视或1D头部姿势的系统。该系统以30赫兹的频率运行,可以检测到人类头部的f值为87.2%,并预测他们的凝视,平均误差为20.9°,包括他们直接远离相机的时候。该系统使用两个卷积神经网络(cnn)分别进行头部检测和凝视估计,并使用常见的跟踪和过滤技术随着时间的推移平滑预测。本文以应用为中心,因此描述了系统的各个组成部分以及用于收集数据和训练cnn的技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enhanced Micro Target Detection through Local Motion Feedback in Biologically Inspired Algorithms Hyperspectral Image Analysis for Writer Identification using Deep Learning Robust Image Watermarking Framework Powered by Convolutional Encoder-Decoder Network Single View 3D Point Cloud Reconstruction using Novel View Synthesis and Self-Supervised Depth Estimation Semantic Segmentation under Severe Imaging Conditions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1