An efficient method for human pointing estimation for robot interaction

S. Ueno, S. Naito, Tsuhan Chen
{"title":"An efficient method for human pointing estimation for robot interaction","authors":"S. Ueno, S. Naito, Tsuhan Chen","doi":"10.1109/ICIP.2014.7025309","DOIUrl":null,"url":null,"abstract":"In this paper, we propose an efficient calibration method to estimate the pointing direction via a human pointing gesture to facilitate robot interaction. The ways in which pointing gestures are used by humans to indicate an object are individually diverse. In addition, people do not always point at the object carefully, which means there is a divergence between the line from the eye to the tip of the index finger and the line of sight. Hence, we focus on adapting to these individual ways of pointing to improve the accuracy of target object identification by means of an effective calibration process. We model these individual ways as two offsets, the horizontal offset and the vertical offset. After locating the head and fingertip positions, we learn these offsets for each individual through a training process with the person pointing at the camera. Experimental results show that our proposed method outperforms other conventional head-hand, head-fingertip, and eye-fingertip-based pointing recognition methods.","PeriodicalId":6856,"journal":{"name":"2014 IEEE International Conference on Image Processing (ICIP)","volume":"07 1","pages":"1545-1549"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2014.7025309","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

In this paper, we propose an efficient calibration method to estimate the pointing direction via a human pointing gesture to facilitate robot interaction. The ways in which pointing gestures are used by humans to indicate an object are individually diverse. In addition, people do not always point at the object carefully, which means there is a divergence between the line from the eye to the tip of the index finger and the line of sight. Hence, we focus on adapting to these individual ways of pointing to improve the accuracy of target object identification by means of an effective calibration process. We model these individual ways as two offsets, the horizontal offset and the vertical offset. After locating the head and fingertip positions, we learn these offsets for each individual through a training process with the person pointing at the camera. Experimental results show that our proposed method outperforms other conventional head-hand, head-fingertip, and eye-fingertip-based pointing recognition methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
机器人交互中人类指向估计的一种有效方法
在本文中,我们提出了一种有效的校准方法,通过人类指向手势来估计指向方向,以方便机器人交互。人类使用指向手势来指示物体的方式各不相同。此外,人们并不总是小心地指向物体,这意味着从眼睛到食指指尖的线与视线之间存在分歧。因此,我们的重点是适应这些不同的指向方式,通过有效的校准过程来提高目标物体识别的精度。我们将这些单独的方式建模为两种偏移,水平偏移和垂直偏移。在定位头部和指尖位置后,我们通过与指向相机的人的训练过程来学习每个人的这些偏移量。实验结果表明,该方法优于其他传统的基于头-手、头-指尖和眼-指尖的指向识别方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Joint source and channel coding of view and rate scalable multi-view video Inter-view consistent hole filling in view extrapolation for multi-view image generation Cost-aware depth map estimation for Lytro camera SVM with feature selection and smooth prediction in images: Application to CAD of prostate cancer Model based clustering for 3D directional features: Application to depth image analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1