Jongwan Lee, Kyunghun Lee, Cong Wang, Dogyeong Ha, Jungyul Park, Taesung Kim
{"title":"Comprehensive Analysis and Control of Diffusioosmosis-Driven Ionic Transport Through Interconnected Nanoporous Membranes","authors":"Jongwan Lee, Kyunghun Lee, Cong Wang, Dogyeong Ha, Jungyul Park, Taesung Kim","doi":"10.1109/MEMS46641.2020.9056409","DOIUrl":null,"url":null,"abstract":"We introduce a micro-/nanofluidic platform enabling the comprehensive analysis and control of diffusioosmosis (DO)-driven ionic transport through a nanochannel network. The nanochannel network is fabricated in the microfluidic channel by forming a membrane via the self-assembly of nanoparticles (i.e., self-assembled particle membrane, SAPM). This fabrication method allows to use various and different nanoparticles so that it is possible to modulate the material properties of the nanochannel network. Using the platform, we analyze the thermal effect on DO-driven ionic transport with various concentrations of electrolyte solutions with the aid of a temperature switching device (TSD).","PeriodicalId":6776,"journal":{"name":"2020 IEEE 33rd International Conference on Micro Electro Mechanical Systems (MEMS)","volume":"18 1","pages":"1134-1136"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 33rd International Conference on Micro Electro Mechanical Systems (MEMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MEMS46641.2020.9056409","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We introduce a micro-/nanofluidic platform enabling the comprehensive analysis and control of diffusioosmosis (DO)-driven ionic transport through a nanochannel network. The nanochannel network is fabricated in the microfluidic channel by forming a membrane via the self-assembly of nanoparticles (i.e., self-assembled particle membrane, SAPM). This fabrication method allows to use various and different nanoparticles so that it is possible to modulate the material properties of the nanochannel network. Using the platform, we analyze the thermal effect on DO-driven ionic transport with various concentrations of electrolyte solutions with the aid of a temperature switching device (TSD).