Vetrivel Kumar Kandasamy, S. Jaganathan, Ratchagaraja Dhairiyasamy, S. Rajendran
{"title":"Optimizing the efficiency of solar thermal collectors and studying the effect of particle concentration and stability using nanofluidic analysis","authors":"Vetrivel Kumar Kandasamy, S. Jaganathan, Ratchagaraja Dhairiyasamy, S. Rajendran","doi":"10.1177/0958305X231183687","DOIUrl":null,"url":null,"abstract":"The emission of greenhouse gases is widely acknowledged as the primary driver of global warming. The adoption of renewable energy sources is paramount to address the dependence on fossil fuels, which contribute significantly to this issue and account for 84.3% of current energy production. Solar thermal energy stands out as a prominent option, representing 54.1% of the world's solar energy derived from solar collectors. However, solar thermal energy encounters challenge due to the suboptimal thermal properties of the liquids used in these collectors. Incorporating particles into the liquids offers a potential solution to enhance absorption and thermal properties. Nanofluids, formed by reducing solid particles to nanoscale dimensions, provide an avenue for improvement. This study aimed to produce an Ag nanofluid through mechanical exfoliation and assess its impact on radiation absorption compared to a GO nanofluid. Under a simulated power of 1 unit, the Ag nanofluid demonstrated temperature differences of 4 to 7°C, while pure water showed no significant deviation. Moreover, the evaporation efficiency of the Ag nanofluid reached up to 40.8% for concentrations of 200 and 500 ppm, compared to 28.6% for pure water. These findings highlight the potential of Ag nanofluid as a promising option for direct absorption solar collectors, owing to its cost-effectiveness, low toxicity, and similar benefits to graphene. Incorporating nanofluids, particularly the Ag nanofluid produced through mechanical exfoliation, can significantly enhance the efficiency of direct absorption solar collectors.","PeriodicalId":11652,"journal":{"name":"Energy & Environment","volume":"9 1","pages":"1564 - 1591"},"PeriodicalIF":4.0000,"publicationDate":"2023-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy & Environment","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1177/0958305X231183687","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL STUDIES","Score":null,"Total":0}
引用次数: 0
Abstract
The emission of greenhouse gases is widely acknowledged as the primary driver of global warming. The adoption of renewable energy sources is paramount to address the dependence on fossil fuels, which contribute significantly to this issue and account for 84.3% of current energy production. Solar thermal energy stands out as a prominent option, representing 54.1% of the world's solar energy derived from solar collectors. However, solar thermal energy encounters challenge due to the suboptimal thermal properties of the liquids used in these collectors. Incorporating particles into the liquids offers a potential solution to enhance absorption and thermal properties. Nanofluids, formed by reducing solid particles to nanoscale dimensions, provide an avenue for improvement. This study aimed to produce an Ag nanofluid through mechanical exfoliation and assess its impact on radiation absorption compared to a GO nanofluid. Under a simulated power of 1 unit, the Ag nanofluid demonstrated temperature differences of 4 to 7°C, while pure water showed no significant deviation. Moreover, the evaporation efficiency of the Ag nanofluid reached up to 40.8% for concentrations of 200 and 500 ppm, compared to 28.6% for pure water. These findings highlight the potential of Ag nanofluid as a promising option for direct absorption solar collectors, owing to its cost-effectiveness, low toxicity, and similar benefits to graphene. Incorporating nanofluids, particularly the Ag nanofluid produced through mechanical exfoliation, can significantly enhance the efficiency of direct absorption solar collectors.
期刊介绍:
Energy & Environment is an interdisciplinary journal inviting energy policy analysts, natural scientists and engineers, as well as lawyers and economists to contribute to mutual understanding and learning, believing that better communication between experts will enhance the quality of policy, advance social well-being and help to reduce conflict. The journal encourages dialogue between the social sciences as energy demand and supply are observed and analysed with reference to politics of policy-making and implementation. The rapidly evolving social and environmental impacts of energy supply, transport, production and use at all levels require contribution from many disciplines if policy is to be effective. In particular E & E invite contributions from the study of policy delivery, ultimately more important than policy formation. The geopolitics of energy are also important, as are the impacts of environmental regulations and advancing technologies on national and local politics, and even global energy politics. Energy & Environment is a forum for constructive, professional information sharing, as well as debate across disciplines and professions, including the financial sector. Mathematical articles are outside the scope of Energy & Environment. The broader policy implications of submitted research should be addressed and environmental implications, not just emission quantities, be discussed with reference to scientific assumptions. This applies especially to technical papers based on arguments suggested by other disciplines, funding bodies or directly by policy-makers.