Yu-Hsiao Fan, Ganapati Hegde, C. Masouros, M. Pesavento
{"title":"Interference Exploitation-Based Hybrid Precoding With Robustness Against Channel Errors","authors":"Yu-Hsiao Fan, Ganapati Hegde, C. Masouros, M. Pesavento","doi":"10.1109/SAM48682.2020.9104323","DOIUrl":null,"url":null,"abstract":"The extremely high cost associated with massive multiple-input multiple-output (MIMO) systems when it is employed with fully digital precoding can be reduced by applying hybrid precoding at an expense of increased transmit power. In such a hybrid precoding system, the transmit power required to achieve a certain quality-of-service (QoS) can be significantly reduced by employing the constructive interference (CI) precoding technique. However, as illustrated in the paper, the symbol error rate (SER) performance of CI-based precoding is very sensitive to channel errors. To address this challenge we propose a hybrid precoding approach with robustness against channel quantization error and channel estimation error. Simulation results demonstrate the superior energy efficiency of the proposed robust hybrid precoding when compared to that of a conventional non-robust precoding scheme in achieving a required QoS target.","PeriodicalId":6753,"journal":{"name":"2020 IEEE 11th Sensor Array and Multichannel Signal Processing Workshop (SAM)","volume":"73 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 11th Sensor Array and Multichannel Signal Processing Workshop (SAM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAM48682.2020.9104323","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The extremely high cost associated with massive multiple-input multiple-output (MIMO) systems when it is employed with fully digital precoding can be reduced by applying hybrid precoding at an expense of increased transmit power. In such a hybrid precoding system, the transmit power required to achieve a certain quality-of-service (QoS) can be significantly reduced by employing the constructive interference (CI) precoding technique. However, as illustrated in the paper, the symbol error rate (SER) performance of CI-based precoding is very sensitive to channel errors. To address this challenge we propose a hybrid precoding approach with robustness against channel quantization error and channel estimation error. Simulation results demonstrate the superior energy efficiency of the proposed robust hybrid precoding when compared to that of a conventional non-robust precoding scheme in achieving a required QoS target.