Interference Exploitation-Based Hybrid Precoding With Robustness Against Channel Errors

Yu-Hsiao Fan, Ganapati Hegde, C. Masouros, M. Pesavento
{"title":"Interference Exploitation-Based Hybrid Precoding With Robustness Against Channel Errors","authors":"Yu-Hsiao Fan, Ganapati Hegde, C. Masouros, M. Pesavento","doi":"10.1109/SAM48682.2020.9104323","DOIUrl":null,"url":null,"abstract":"The extremely high cost associated with massive multiple-input multiple-output (MIMO) systems when it is employed with fully digital precoding can be reduced by applying hybrid precoding at an expense of increased transmit power. In such a hybrid precoding system, the transmit power required to achieve a certain quality-of-service (QoS) can be significantly reduced by employing the constructive interference (CI) precoding technique. However, as illustrated in the paper, the symbol error rate (SER) performance of CI-based precoding is very sensitive to channel errors. To address this challenge we propose a hybrid precoding approach with robustness against channel quantization error and channel estimation error. Simulation results demonstrate the superior energy efficiency of the proposed robust hybrid precoding when compared to that of a conventional non-robust precoding scheme in achieving a required QoS target.","PeriodicalId":6753,"journal":{"name":"2020 IEEE 11th Sensor Array and Multichannel Signal Processing Workshop (SAM)","volume":"73 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 11th Sensor Array and Multichannel Signal Processing Workshop (SAM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAM48682.2020.9104323","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The extremely high cost associated with massive multiple-input multiple-output (MIMO) systems when it is employed with fully digital precoding can be reduced by applying hybrid precoding at an expense of increased transmit power. In such a hybrid precoding system, the transmit power required to achieve a certain quality-of-service (QoS) can be significantly reduced by employing the constructive interference (CI) precoding technique. However, as illustrated in the paper, the symbol error rate (SER) performance of CI-based precoding is very sensitive to channel errors. To address this challenge we propose a hybrid precoding approach with robustness against channel quantization error and channel estimation error. Simulation results demonstrate the superior energy efficiency of the proposed robust hybrid precoding when compared to that of a conventional non-robust precoding scheme in achieving a required QoS target.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于干扰利用的信道误差鲁棒性混合预编码
大规模多输入多输出(MIMO)系统与全数字预编码相结合时的极高成本可以通过采用混合预编码来降低,但代价是增加发射功率。在这种混合预编码系统中,采用建设性干扰(CI)预编码技术可以显著降低达到一定服务质量(QoS)所需的发射功率。然而,如本文所述,基于ci的预编码的符号误码率(SER)性能对信道错误非常敏感。为了解决这一挑战,我们提出了一种混合预编码方法,具有对信道量化误差和信道估计误差的鲁棒性。仿真结果表明,与传统的非鲁棒预编码方案相比,所提出的鲁棒混合预编码方案在实现所需的QoS目标方面具有更高的能量效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
GPU-accelerated parallel optimization for sparse regularization Efficient Beamforming Training and Channel Estimation for mmWave MIMO-OFDM Systems Online Robust Reduced-Rank Regression Block Sparsity Based Chirp Transform for Modeling Marine Mammal Whistle Calls Deterministic Coherence-Based Performance Guarantee for Noisy Sparse Subspace Clustering using Greedy Neighbor Selection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1