Adversarial Example Detection Using Latent Neighborhood Graph

Ahmed A. Abusnaina, Yuhang Wu, Sunpreet S. Arora, Yizhen Wang, Fei Wang, Hao Yang, David A. Mohaisen
{"title":"Adversarial Example Detection Using Latent Neighborhood Graph","authors":"Ahmed A. Abusnaina, Yuhang Wu, Sunpreet S. Arora, Yizhen Wang, Fei Wang, Hao Yang, David A. Mohaisen","doi":"10.1109/ICCV48922.2021.00759","DOIUrl":null,"url":null,"abstract":"Detection of adversarial examples with high accuracy is critical for the security of deployed deep neural network-based models. We present the first graph-based adversarial detection method that constructs a Latent Neighborhood Graph (LNG) around an input example to determine if the input example is adversarial. Given an input example, selected reference adversarial and benign examples (represented as LNG nodes in Figure 1) are used to capture the local manifold in the vicinity of the input example. The LNG node connectivity parameters are optimized jointly with the parameters of a graph attention network in an end-to-end manner to determine the optimal graph topology for adversarial example detection. The graph attention network is used to determine if the LNG is derived from an adversarial or benign input example. Experimental evaluations on CIFAR-10, STL-10, and ImageNet datasets, using six adversarial attack methods, demonstrate that the proposed method outperforms state-of-the-art adversarial detection methods in white-box and gray-box settings. The proposed method is able to successfully detect adversarial examples crafted with small perturbations using unseen attacks.","PeriodicalId":6820,"journal":{"name":"2021 IEEE/CVF International Conference on Computer Vision (ICCV)","volume":"175 1","pages":"7667-7676"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE/CVF International Conference on Computer Vision (ICCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV48922.2021.00759","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 32

Abstract

Detection of adversarial examples with high accuracy is critical for the security of deployed deep neural network-based models. We present the first graph-based adversarial detection method that constructs a Latent Neighborhood Graph (LNG) around an input example to determine if the input example is adversarial. Given an input example, selected reference adversarial and benign examples (represented as LNG nodes in Figure 1) are used to capture the local manifold in the vicinity of the input example. The LNG node connectivity parameters are optimized jointly with the parameters of a graph attention network in an end-to-end manner to determine the optimal graph topology for adversarial example detection. The graph attention network is used to determine if the LNG is derived from an adversarial or benign input example. Experimental evaluations on CIFAR-10, STL-10, and ImageNet datasets, using six adversarial attack methods, demonstrate that the proposed method outperforms state-of-the-art adversarial detection methods in white-box and gray-box settings. The proposed method is able to successfully detect adversarial examples crafted with small perturbations using unseen attacks.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于潜在邻域图的对抗性样本检测
高精度的对抗性样本检测对于部署的基于深度神经网络的模型的安全性至关重要。我们提出了第一个基于图的对抗性检测方法,该方法围绕输入示例构建一个潜在邻域图(LNG),以确定输入示例是否对抗性。给定一个输入示例,使用选定的参考对抗和良性示例(在图1中表示为LNG节点)来捕获输入示例附近的局部流形。将LNG节点连通性参数与图注意网络的参数进行端到端联合优化,确定用于对抗样例检测的最优图拓扑。图注意网络用于确定LNG是否来自敌对或良性输入示例。在CIFAR-10、STL-10和ImageNet数据集上使用六种对抗性攻击方法进行的实验评估表明,该方法在白盒和灰盒设置下优于最先进的对抗性检测方法。所提出的方法能够成功地检测到使用不可见攻击的小扰动制作的对抗性示例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Naturalistic Physical Adversarial Patch for Object Detectors Polarimetric Helmholtz Stereopsis Deep Transport Network for Unsupervised Video Object Segmentation Real-time Vanishing Point Detector Integrating Under-parameterized RANSAC and Hough Transform Adaptive Label Noise Cleaning with Meta-Supervision for Deep Face Recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1