Adaptation of the Ant Colony Algorithm to Avoid Congestion in Wireless Mesh Networks

Fadhil Mohammed Salman, Ahssan Ahmed Mohammed, Fanar Ali Joda
{"title":"Adaptation of the Ant Colony Algorithm to Avoid Congestion in Wireless Mesh Networks","authors":"Fadhil Mohammed Salman, Ahssan Ahmed Mohammed, Fanar Ali Joda","doi":"10.13052/jcsm2245-1439.1258","DOIUrl":null,"url":null,"abstract":"Wireless mesh networks have recently presented a promising environment for many researchers to develop large-scale wireless communication. Traffic in WMNs often suffers from congestion due to heavy traffic load’s saturation of certain routes. Therefore, this article proposes an efficient approach for congestion awareness and load balancing in WMNs, based on the Ant Colony Optimization (ACO) approach. The proposed approach aims to raise the performance of the WMN by distributing the traffic load between optimal routes and avoiding severe traffic congestion. The proposed approach relies on three basic mechanisms: detection of severe congestion within the ideal paths used for data transmission, creation of ideal secondary paths with updated pheromone values, and distribution of the traffic load (data packet flow) between the primary and secondary ideal paths. According to the results of the NS2 simulator, the suggested approach increased the WMN throughput by 14.8% when compared to the CACO approach and by 37% when employing the WCETT approach. The results also showed that the proposed approach achieved an average end-to-end delay closing of 0.0562, while WCETT and CACO approaches achieved an average end-to-end delay close to 0.1021 and 0.0976, respectively. The results indicated that the proposed approach achieved a lower percentage of dropped packets by 6.97% and 0.99% compared to the WCETT and CACO approaches. Thus, the proposed approach is effective in improving the performance of WMNs.","PeriodicalId":37820,"journal":{"name":"Journal of Cyber Security and Mobility","volume":"148 1","pages":"785-812"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cyber Security and Mobility","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13052/jcsm2245-1439.1258","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

Abstract

Wireless mesh networks have recently presented a promising environment for many researchers to develop large-scale wireless communication. Traffic in WMNs often suffers from congestion due to heavy traffic load’s saturation of certain routes. Therefore, this article proposes an efficient approach for congestion awareness and load balancing in WMNs, based on the Ant Colony Optimization (ACO) approach. The proposed approach aims to raise the performance of the WMN by distributing the traffic load between optimal routes and avoiding severe traffic congestion. The proposed approach relies on three basic mechanisms: detection of severe congestion within the ideal paths used for data transmission, creation of ideal secondary paths with updated pheromone values, and distribution of the traffic load (data packet flow) between the primary and secondary ideal paths. According to the results of the NS2 simulator, the suggested approach increased the WMN throughput by 14.8% when compared to the CACO approach and by 37% when employing the WCETT approach. The results also showed that the proposed approach achieved an average end-to-end delay closing of 0.0562, while WCETT and CACO approaches achieved an average end-to-end delay close to 0.1021 and 0.0976, respectively. The results indicated that the proposed approach achieved a lower percentage of dropped packets by 6.97% and 0.99% compared to the WCETT and CACO approaches. Thus, the proposed approach is effective in improving the performance of WMNs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
自适应蚁群算法避免无线Mesh网络拥塞
近年来,无线网状网络为许多研究人员开发大规模无线通信提供了一个有前景的环境。由于某些路由的高流量负荷饱和,WMNs中经常出现拥塞现象。因此,本文提出了一种基于蚁群优化(蚁群优化)方法的WMNs拥塞感知和负载平衡的有效方法。该方法旨在通过在最优路由之间分配交通负载和避免严重的交通拥堵来提高WMN的性能。所提出的方法依赖于三个基本机制:检测用于数据传输的理想路径中的严重拥塞,创建具有更新信息素值的理想次要路径,以及在主要和次要理想路径之间分配流量负载(数据包流)。根据NS2模拟器的结果,与CACO方法相比,建议的方法将WMN吞吐量提高了14.8%,与采用WCETT方法相比,该方法提高了37%。结果还表明,该方法的平均端到端延迟关闭为0.0562,而WCETT和CACO方法的平均端到端延迟分别接近0.1021和0.0976。结果表明,与WCETT和CACO方法相比,该方法的丢包率分别降低了6.97%和0.99%。因此,该方法可以有效地提高WMNs的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Cyber Security and Mobility
Journal of Cyber Security and Mobility Computer Science-Computer Networks and Communications
CiteScore
2.30
自引率
0.00%
发文量
10
期刊介绍: Journal of Cyber Security and Mobility is an international, open-access, peer reviewed journal publishing original research, review/survey, and tutorial papers on all cyber security fields including information, computer & network security, cryptography, digital forensics etc. but also interdisciplinary articles that cover privacy, ethical, legal, economical aspects of cyber security or emerging solutions drawn from other branches of science, for example, nature-inspired. The journal aims at becoming an international source of innovation and an essential reading for IT security professionals around the world by providing an in-depth and holistic view on all security spectrum and solutions ranging from practical to theoretical. Its goal is to bring together researchers and practitioners dealing with the diverse fields of cybersecurity and to cover topics that are equally valuable for professionals as well as for those new in the field from all sectors industry, commerce and academia. This journal covers diverse security issues in cyber space and solutions thereof. As cyber space has moved towards the wireless/mobile world, issues in wireless/mobile communications and those involving mobility aspects will also be published.
期刊最新文献
Network Malware Detection Using Deep Learning Network Analysis An Efficient Intrusion Detection and Prevention System for DDOS Attack in WSN Using SS-LSACNN and TCSLR Update Algorithm of Secure Computer Database Based on Deep Belief Network Malware Cyber Threat Intelligence System for Internet of Things (IoT) Using Machine Learning Deep Learning Based Hybrid Analysis of Malware Detection and Classification: A Recent Review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1