Thermopower across the phase diagram of the cuprate La1.6−xNd0.4SrxCuO4 : Signatures of the pseudogap and charge density wave phases

C. Collignon, A. Ataei, A. Gourgout, S. Badoux, M. Lizaire, A. Legros, S. Licciardello, S. Wiedmann, J.-Q. Yan, J. Zhou, Q. Ma, B. Gaulin, N. Doiron-Leyraud, L. Taillefer
{"title":"Thermopower across the phase diagram of the cuprate \nLa1.6−xNd0.4SrxCuO4\n: Signatures of the pseudogap and charge density wave phases","authors":"C. Collignon, A. Ataei, A. Gourgout, S. Badoux, M. Lizaire, A. Legros, S. Licciardello, S. Wiedmann, J.-Q. Yan, J. Zhou, Q. Ma, B. Gaulin, N. Doiron-Leyraud, L. Taillefer","doi":"10.1103/PHYSREVB.103.155102","DOIUrl":null,"url":null,"abstract":"The Seebeck coefficient (thermopower) $S$ of the cuprate superconductor La$_{1.6-x}$Nd$_{0.4}$Sr$_x$CuO$_4$ was measured across its doping phase diagram (from $p = 0.12$ to $p = 0.25$), at various temperatures down to $T \\simeq 2$ K, in the normal state accessed by suppressing superconductivity with a magnetic field up to $H = 37.5$ T. The magnitude of $S/T$ in the $T=0$ limit is found to suddenly increase, by a factor $\\simeq 5$, when the doping is reduced below $p^{\\star} = 0.23$, the critical doping for the onset of the pseudogap phase. This confirms that the pseudogap phase causes a large reduction of the carrier density $n$, consistent with a drop from $n = 1 + p$ above $p^{\\star}$ to $n = p$ below $p^{\\star}$, as previously inferred from measurements of the Hall coefficient, resistivity and thermal conductivity. When the doping is reduced below $p = 0.19$, a qualitative change is observed whereby $S/T$ decreases as $T \\to 0$, eventually to reach negative values at $T=0$. In prior work on other cuprates, negative values of $S/T$ at $T \\to 0$ were shown to result from a reconstruction of the Fermi surface caused by charge-density-wave (CDW) order. We therefore identify $p_{\\rm CDW} \\simeq 0.19$ as the critical doping beyond which there is no CDW-induced Fermi surface reconstruction. The fact that $p_{\\rm CDW}$ is well separated from $p^{\\star}$ reveals that there is a doping range below $p^{\\star}$ where the transport signatures of the pseudogap phase are unaffected by CDW correlations, as previously found in YBa$_2$Cu$_3$O$_y$ and La$_{2-x}$Sr$_x$CuO$_4$.","PeriodicalId":8514,"journal":{"name":"arXiv: Superconductivity","volume":"01 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Superconductivity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/PHYSREVB.103.155102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

The Seebeck coefficient (thermopower) $S$ of the cuprate superconductor La$_{1.6-x}$Nd$_{0.4}$Sr$_x$CuO$_4$ was measured across its doping phase diagram (from $p = 0.12$ to $p = 0.25$), at various temperatures down to $T \simeq 2$ K, in the normal state accessed by suppressing superconductivity with a magnetic field up to $H = 37.5$ T. The magnitude of $S/T$ in the $T=0$ limit is found to suddenly increase, by a factor $\simeq 5$, when the doping is reduced below $p^{\star} = 0.23$, the critical doping for the onset of the pseudogap phase. This confirms that the pseudogap phase causes a large reduction of the carrier density $n$, consistent with a drop from $n = 1 + p$ above $p^{\star}$ to $n = p$ below $p^{\star}$, as previously inferred from measurements of the Hall coefficient, resistivity and thermal conductivity. When the doping is reduced below $p = 0.19$, a qualitative change is observed whereby $S/T$ decreases as $T \to 0$, eventually to reach negative values at $T=0$. In prior work on other cuprates, negative values of $S/T$ at $T \to 0$ were shown to result from a reconstruction of the Fermi surface caused by charge-density-wave (CDW) order. We therefore identify $p_{\rm CDW} \simeq 0.19$ as the critical doping beyond which there is no CDW-induced Fermi surface reconstruction. The fact that $p_{\rm CDW}$ is well separated from $p^{\star}$ reveals that there is a doping range below $p^{\star}$ where the transport signatures of the pseudogap phase are unaffected by CDW correlations, as previously found in YBa$_2$Cu$_3$O$_y$ and La$_{2-x}$Sr$_x$CuO$_4$.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
铜La1.6−xNd0.4SrxCuO4的热功率图:赝隙和电荷密度波相的特征
塞贝克系数(热功率) $S$ 铜超导体La$_{1.6-x}$然后$_{0.4}$高级$_x$郭$_4$ 通过其掺杂相图(从 $p = 0.12$ 到 $p = 0.25$),在不同的温度下降到 $T \simeq 2$ K,在正常状态下,通过磁场抑制超导性达到 $H = 37.5$ 的大小 $S/T$ 在 $T=0$ 发现极限突然增加了一个因子 $\simeq 5$,当掺杂降为以下时 $p^{\star} = 0.23$,赝隙相发生的临界掺杂。这证实了赝隙相导致载流子密度的大幅度降低 $n$,与从 $n = 1 + p$ 上面 $p^{\star}$ 到 $n = p$ 下面 $p^{\star}$,正如先前从霍尔系数、电阻率和导热系数的测量中推断的那样。当掺杂还原如下 $p = 0.19$,由此观察到质变 $S/T$ 随 $T \to 0$,最终达到负值 $T=0$. 在先前对其他铜的研究中,的负值 $S/T$ 在 $T \to 0$ 被证明是由电荷密度波(CDW)顺序引起的费米表面重构的结果。因此,我们确定 $p_{\rm CDW} \simeq 0.19$ 作为临界掺杂,超过该临界掺杂,cdw诱导的费米表面重构就不复存在。事实是 $p_{\rm CDW}$ 很好地与 $p^{\star}$ 揭示了下面有一个兴奋剂范围 $p^{\star}$ 其中赝隙相的输运特征不受CDW相关的影响,如先前在YBa$_2$Cu$_3$o$_y$ 和La$_{2-x}$高级$_x$郭$_4$.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Flux trapping in superconducting hydrides under high pressure. Nodal superconductivity and superconducting domes in the topological Kagome metal CsV3Sb5 Bereziskii-Kosterlitz-Thouless transition in the Weyl system PtBi2 Josephson effect of superconductors with J=32 electrons Insulating regime of an underdamped current-biased Josephson junction supporting Z3 and Z4 parafermions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1