3D trajectories for action recognition

Michal Koperski, P. Bilinski, F. Brémond
{"title":"3D trajectories for action recognition","authors":"Michal Koperski, P. Bilinski, F. Brémond","doi":"10.1109/ICIP.2014.7025848","DOIUrl":null,"url":null,"abstract":"Recent development in affordable depth sensors opens new possibilities in action recognition problem. Depth information improves skeleton detection, therefore many authors focused on analyzing pose for action recognition. But still skeleton detection is not robust and fail in more challenging scenarios, where sensor is placed outside of optimal working range and serious occlusions occur. In this paper we investigate state-of-the-art methods designed for RGB videos, which have proved their performance. Then we extend current state-of-the-art algorithms to benefit from depth information without need of skeleton detection. In this paper we propose two novel video descriptors. First combines motion and 3D information. Second improves performance on actions with low movement rate. We validate our approach on challenging MSR Daily Activty 3D dataset.","PeriodicalId":6856,"journal":{"name":"2014 IEEE International Conference on Image Processing (ICIP)","volume":"77 1","pages":"4176-4180"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2014.7025848","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

Abstract

Recent development in affordable depth sensors opens new possibilities in action recognition problem. Depth information improves skeleton detection, therefore many authors focused on analyzing pose for action recognition. But still skeleton detection is not robust and fail in more challenging scenarios, where sensor is placed outside of optimal working range and serious occlusions occur. In this paper we investigate state-of-the-art methods designed for RGB videos, which have proved their performance. Then we extend current state-of-the-art algorithms to benefit from depth information without need of skeleton detection. In this paper we propose two novel video descriptors. First combines motion and 3D information. Second improves performance on actions with low movement rate. We validate our approach on challenging MSR Daily Activty 3D dataset.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于动作识别的3D轨迹
近年来经济实惠的深度传感器的发展为动作识别问题开辟了新的可能性。深度信息改善了骨骼检测,因此许多作者将研究重点放在了姿态分析上。但是,在传感器放置在最佳工作范围之外并且发生严重咬合的更具挑战性的情况下,骨骼检测仍然不够稳健,并且会失败。在本文中,我们研究了为RGB视频设计的最先进的方法,并证明了它们的性能。然后,我们扩展了当前最先进的算法,使其在不需要骨骼检测的情况下受益于深度信息。本文提出了两种新的视频描述符。首先结合运动和3D信息。第二,提高低移动速率动作的性能。我们在挑战MSR Daily activity 3D数据集上验证了我们的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Joint source and channel coding of view and rate scalable multi-view video Inter-view consistent hole filling in view extrapolation for multi-view image generation Cost-aware depth map estimation for Lytro camera SVM with feature selection and smooth prediction in images: Application to CAD of prostate cancer Model based clustering for 3D directional features: Application to depth image analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1